刚刚看了一个大牛的树形dp的入门博客,记录一下
题意:
某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知每个人的活跃指数和上司关系(当然不可能存在环),求邀请哪些人(多少人)来能使得晚会的总活跃指数最大。
转移方程:
任何一个点的取舍可以看作一种决策,那么状态就是在某个点取的时候或者不取的时候,以他为根的子树能有的最大活跃总值。分别可以用f[i,1]和f[i,0]表示第i个人来和不来。
当i来的时候,dp[i][1] += dp[j][0];//j为i的下属
当i不来的时候,dp[i][0] +=max(dp[j][1],dp[j][0]);//j为i的下属
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define clr(a,b) memset(a,b,sizeof(a))
#define pb(a) push_back(a)
#define fir first
#define se second
#define LL long long
typedef pair<int,int> pii;
const double eps = 0.0000001;
const int inf = 1e9+7;
const int maxn = 100005;
int dp[maxn][2],fa[maxn],vis[maxn];
vector<int> son[maxn];
int search(int x) {
if(fa[x] != -1) search(fa[x]);
else return x;
}
void dfs(int x) {
vis[x] = 1;
for(int i = 0;i < son[x].size();i++) {
int s = son[x][i];
dfs(s);
dp[x][1] += dp[s][1];
}
}
int main() {
int n;
while(scanf("%d",&n) != EOF && n) {
for(int i = 1;i <= n;i++) son[i].clear();
clr(fa,-1);
clr(dp,0);
clr(vis,0);
for(int i = 1;i <= n;i++) scanf("%d",&dp[i][1]);
for(int i = 1;i <= n-1;i ++) {
int x,y;
scanf("%d%d",&x,&y);
fa[x] = y;
son[y].pb(x);
}
int s = search(1);
dfs(s);
printf("%d\n",dp[s][1]);
}
}
这几天太颓废了,接下来加油了!