信息学竞赛常用函数/模板

说明:

1.模板中maxn表示最大数据规模,可以用  常量\,\,\,\,INT \,\,\,\,MAXN =数 定义,其中数为数值

2.对于含有模板的模板,用类似于STL中的map,bitset的方法定义

数学模块

扩展欧几里得算法

说明:用于计算方程通过= d AX + 其中d = GCD(A,B) 的一组解

void exgcd(int a,int b,int& d,int& x,int& y){
    if(!b){d=a,x=1,y=0;return;}
    exgcd(b,a%b,d,y,x);y-=x*(a/b);
}

乘法逆元

说明:求a的模m乘法逆元(一个^ { -  1} \,\,MOD \,\,米),其中a,m互质;如果返回值为-1说明无解,建议用参数类型用long long

void exgcd(int a,int b,int& d,int& x,int& y){
    if(!b){d=a,x=1,y=0;return;}
    exgcd(b,a%b,d,y,x);y-=x*(a/b);
}
int inverse(int a,int m){
	int x,y,d;
	exgcd(a,m,d,x,y);
	return d==1?(x%m+m)%m:-1;
}

高精度模板

见:C ++中高精度正整数运算代码模板

O(\ SQRT {N})计算欧拉函数

int phi(int x){
	int ans=x,m=sqrt(x+0.01);
	for(int i=2;i<=m;i++) if(x%i==0){
		ans=ans/i*(i-1);
		while(x%i==0) x/=i;
	}
	if(x>1) ans=ans/x*(x-1);//x为质数
	return ans;
}

线性时间复杂度生成欧拉函数表+质数表

/* 
p|n &&  p*p|n phi(n)=phi(n/p)*p
p|n && !p*p|n phi(n)=phi(n/p)*(p-1) 
*/ 
int v[maxn],pri[maxn],phi[maxn];
void eular(int n){
	int num=0;//number of prime 
	for(int i=2;i<=n;i++) {
		if(v[i]==0){//v[i]:i 的最小质因子
			v[i]=i,pri[++num]=i;
			phi[i]=i-1;
		}
		for(int j=1;j<=num;j++){
			if(pri[j]>v[i]||pri[j]>n/i) break;
			v[i*pri[j]]=pri[j];
			phi[i*pri[j]]=phi[i]*(i%pri[j]?pri[j]-1:pri[j]);
		}
	}
	for(int i=1;i<=n;i++) printf("phi(%d)=%d\n",i,phi[i]);
}

BSGS算法

说明:用于计算高次同余方程  a ^ x \ equiv b \,\,(mod \,\,p) 的最小非负数解,其中p为素数,时间复杂度O(\ SQRT {P} \,\),返回-1表示无解

int pow_mod(int a,int n,int p){
	int ret=1;
	while(n){
		if(n&1) ret=(long long)ret*a%p;
		a=(long long)a*a%p,n>>=1;
	}
	return ret;
}
map<int,int>mp;
int bsgs(int a,int b,int p){
	if(a%p==0) return b?-1:0;
	mp.clear();
	int m=ceil(sqrt(p)),T=b%p;
	mp[T]=0;
	for(int i=1;i<=m;i++)
		mp[T=(long long)T*a%p]=i;
	int t=pow_mod(a,m,p);T=1;
	for(int i=1;i<=m;i++){
		T=(long long)T*t%p;
		if(mp.count(T)) return i*m-mp[T];
	}
	return -1;
}

卢卡斯(Lucas)定理

说明:Lucas定理:若 p 为质数,对于整数1\leqslant m\leqslant nC_n^m\equiv C_{n\,\,mod\,\,p}^{m\,\,mod\,\,p}C_{n/p}^{m/p}\,\,(mod\,\,p)

代码中函数 C(N,M,p) 用于计算 C_n^m\,\,mod\,\,p ,inv[ i ] 表示 i 模 p 的逆元

int C(int N,int M,int p){
    if(N<M) return 0;
    if(!N) return 1;
    return (ll)fac[N]*inv[fac[M]]*inv[fac[N-M]]%p;
}
int lucas(int N,int M,int p){
    if(M==0) return 1;
    return (ll)lucas(N/p,M/p,p)*C(N%p,M%p,p)%p;
}

扩展中国剩余定理

说明:题目请参考:【模板】扩展中国剩余定理(EXCRT),算法请参考题解释:【模板】扩展中国剩余定理(EXCRT)题解

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005;
#define ll __int128
void exgcd(ll a,ll b,ll& d,ll& x,ll& y){
    if(!b){x=1,y=0,d=a;return;}
    exgcd(b,a%b,d,y,x),y-=x*(a/b);
}
ll gcd(ll a,ll b){
    return b?gcd(b,a%b):a;
}
ll lcm(ll a,ll b){
    return a*b/gcd(a,b);
}
ll a[maxn],b[maxn];
long long a__,b__;
int n;
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++) 
        scanf("%lld%lld",&a__,&b__),a[i]=a__,b[i]=b__;
    for(int i=1;i<n;i++){
        ll a_=a[i],b_=-a[i+1],c_=b[i+1]-b[i],d,x,y,md;
        exgcd(a_,b_,d,x,y);
        if(c_%d){break;/*No answer*/}
        x=c_/d*x,md=b_/d;
        if(md<0) md=-md;
        x=(x%md+md)%md;
        b[i+1]=a[i]*x+b[i];
        a[i+1]=lcm(a[i],a[i+1]);
    }
    printf("%lld\n",(long long)b[n]);
    return 0;
}

矩阵运算

说明:T和MOD可以根据需要修改,其中unit_matrix(n)表示转化为n * n的单位矩阵

struct matrix{
	#define T int
	#define MOD 0x7fffffff
    int N,M;
	T mtx[maxn][maxn];
    matrix(){M=N=0;memset(mtx,0,sizeof(mtx));}
    void resize(int n,int m){N=n,M=m;}
    void unit_matrix(int n){
    	memset(mtx,0,sizeof(mtx));
    	N=M=n;
    	for(int i=0;i<n;i++) mtx[i][i]=1;
	}
    void input(){//just for int
        for(int i=0;i<N;i++)
          for(int j=0;j<M;j++)
            scanf("%d",&mtx[i][j]);
    }
    void output(){//just for int
        for(int i=0;i<M;i++){
        	for(int j=0;j<N;j++)
        		printf("%d ",mtx[i][j]);
        	putchar('\n');
        }
    }
    friend matrix operator * (matrix x,matrix y){
        matrix ans;
    	if(x.N!=y.M) return ans; //Error
        ans.N=x.N,ans.M=y.M;
        for(int i=0;i<x.N;i++)
          for(int j=0;j<y.M;j++){
            T S=0;
            for(int k=0;k<x.N;k++)
                S=(S+x.mtx[i][k]*y.mtx[k][j])%MOD;
            ans.mtx[i][j]=S%MOD;
        }
        return ans;
    }
    friend matrix operator ^ (matrix x,int n){
    	matrix ans;
    	if(x.N!=x.M) return ans;//Error
    	ans.unit_matrix(x.N);
    	while(n){
    		if(n&1) ans=ans*x;
    		x=x*x,n>>=1;
		}
		return ans;
	}
    #undef T
    #undef MOD
};

数据结构模块

并查集

struct union_set{
	int f[maxn];
	void init(int n){for(int i=1;i<=n;i++) f[i]=i;}
	int find(int x){return x==f[x]?x:f[x]=find(f[x]);}
	bool merge(int x,int y){
		int fx=find(x),fy=find(y);
		if(fx!=fy) f[fx]=fy;
		return fx==fy;
	}
};

链表

数组版

struct node{
    int v,pre,nxt;
};
struct link_list{
    node E[maxn];
    int now,head,tail;
    link_list(){
        now=2,head=1,tail=2;
        E[head].nxt=tail,E[tail].pre=head;
    }
    int insert(int pos,int v){
        now++,E[now].v=v;
        E[E[pos].nxt].pre=now,E[now].nxt=E[pos].nxt;
        E[pos].nxt=now,E[now].pre=pos;
        return now;
    }
    int insert_to_tail(int v){
        return insert(E[tail].pre,v);
    }
    void del(int pos){
        E[E[pos].pre].nxt=E[pos].nxt;
        E[E[pos].nxt].pre=E[pos].pre;
    }
};

指针加强版

template<typename T>
struct node{
    T v;
    node *pre,*nxt;
};
template<typename T>
struct link_list{
    node<T> *head,*tail,*tmp;
	link_list(){
        head=new node<T>(),tail=new node<T>();
        head->nxt=tail,tail->pre=head;
    }
    node<T>* insert(node<T> *pos,T v){
        tmp=new node<T>();
        tmp->v=v;
        pos->nxt->pre=tmp,tmp->nxt=pos->nxt;
        pos->nxt=tmp,tmp->pre=pos;
        return tmp;
    }
    node<T>* insert_to_tail(T v){
        return insert(tail->pre,v);
    }
    node<T>* insert_to_head(T v){
        return insert(head,v);
    }
    void del(node<T>* pos){
        pos->pre->nxt=pos->nxt;
        pos->nxt->pre=pos->pre;
        delete pos;
    }
    node<T>* pre(node<T>* pos){return pos->pre;}
    node<T>* nxt(node<T>* pos){return pos->nxt;}
    T posv(node<T>* pos){return pos->v;}
    T prev(node<T>* pos){return pos->pre->v;}
    T nxtv(node<T>* pos){return pos->nxt->v;}
};

二叉堆

说明:比起优先队列,多了一个remove操作

template<typename T>
class Heap{
  private:
    T heap[maxn];
    int now;
  public:
    Heap(){now=0;}
    void up(int p){
        while(p){
          if(heap[p]<heap[p/2])
            swap(heap[p],heap[p/2]),p/=2;
          else break;
        }
    }
    void down(int p){
        int p_=p*2;
        while(p_<=now){
            if(p_<now&&heap[p_+1]<heap[p_]) p_++;
            if(heap[p_]<heap[p])
              swap(heap[p_],heap[p]),p=p_,p_*=2;
            else break;
        }
    }
    void push(T v){heap[++now]=v,up(now);}
    void pop(){heap[1]=heap[now--],down(1);}
    void remove(int p){heap[p]=heap[now--],up(p),down(p);}
    T top(){return heap[1];}
};

二维树状数组

说明:支持单点修改,区间求值

简易版

struct BIT_2{
  private:
  	#define lowbit(x) ((x)&-(x))
    int C[maxn][maxn];
  public:
  	void update(int x,int y,int d){
  		for(int i=x;i<=n;i+=lowbit(i))
  		  for(int j=y;j<=m;j+=lowbit(j))
  		    C[i][j]+=d;
    }
    int query(int x,int y){
        int ret=0;
        for(int i=x;i>0;i-=lowbit(i))
          for(int j=y;j>0;j-=lowbit(j))
            ret+=C[i][j];
        return ret;
    }
};

加强版

template<typename T,int N,int M>
class BIT_2{
  private:
  	#define lowbit(x) ((x)&-(x))
    T C[N+1][M+1],N_,M_;
  public:
  	BIT_2(){N_=N,M_=M;}
  	void reset(int n_,int m_){N_=n_,M_=m_;}
  	void update(int x,int y,int d){
  		for(int i=x;i<=N_;i+=lowbit(i))
  		  for(int j=y;j<=M_;j+=lowbit(j))
  		    C[i][j]+=d;
    }
    T query(int x,int y){
        T ret=0;
        for(int i=x;i>0;i-=lowbit(i))
          for(int j=y;j>0;j-=lowbit(j))
            ret+=C[i][j];
        return ret;
    }
    T query(int x,int y,int x_,int y_){
        return query(x_,y_)-query(x-1,y_)-query(x_,y-1)+query(x-1,y-1);
    }
};

Splay

Splay实现平衡树

模板题目见:【模板】普通平衡树,模板修改自洛谷日报,原文+详解见:Splay简易教程

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005;
int fa[maxn],ch[maxn][2],val[maxn],cnt[maxn],sz[maxn],rt,now;
int chk(int x){
    return ch[fa[x]][1]==x;
}
#define pushup(x) sz[x]=sz[ch[x][0]]+sz[ch[x][1]]+cnt[x]
void rotate(int x){
    int y=fa[x],z=fa[y],k=chk(x),w=ch[x][k^1];
    ch[y][k]=w,fa[w]=y;
    ch[z][chk(y)]=x,fa[x]=z;
    ch[x][k^1]=y,fa[y]=x;
    pushup(y),pushup(x);
}
void splay(int x,int goal=0){
    while(fa[x]!=goal){
        int y=fa[x],z=fa[y];
        if(z!=goal){
            if(chk(x)==chk(y)) rotate(y);
            else rotate(x);
        }
        rotate(x);
    }
    if(!goal) rt=x;
}
void rebuild(int x){//将小于等于x的最大元素重建到根
    int cur=rt;
    while(ch[cur][x>val[cur]]&&x!=val[cur])
        cur=ch[cur][x>val[cur]];
    splay(cur);
}
void insert(int x){
    int cur=rt,p=0;
    while(cur&&val[cur]!=x)
        p=cur,cur=ch[cur][x>val[cur]];
    if(cur) cnt[cur]++;
    else{
        cur=++now;
        if(p) ch[p][x>val[p]]=cur;
        ch[cur][0]=ch[cur][1]=0;
        val[cur]=x,fa[cur]=p;
        cnt[cur]=sz[cur]=1;
    }
    splay(cur);
}
int rank(int x){
    rebuild(x);
    return sz[ch[rt][0]];
}
int kth(int k){
    int cur=rt;
    while(true){
        if(ch[cur][0]&&k<=sz[ch[cur][0]])
            cur=ch[cur][0];
        else if(k>sz[ch[cur][0]]+cnt[cur])
            k-=sz[ch[cur][0]]+cnt[cur],cur=ch[cur][1];
        else return cur;
    }
}
int beside(int x,int pre){
    rebuild(x);
    if((val[rt]<x&&pre)||(val[rt]>x&&!pre)) return rt;
    int cur=ch[rt][pre^1];
    while(ch[cur][pre]) cur=ch[cur][pre];
    return cur;
}
void remove(int x){
    int pre=beside(x,1),nxt=beside(x,0);
    splay(pre),splay(nxt,pre);
    int cur=ch[nxt][0];
    if(cnt[cur]>1) cnt[cur]--,splay(cur);
    else ch[nxt][0]=0,sz[nxt]--,sz[pre]--;
}
int main(){
    int c,x,m;
    scanf("%d",&m);
    insert(0x3f3f3f3f);
    insert(-0x3f3f3f3f);
    while(m--){
    	scanf("%d%d",&c,&x);
    	switch(c){
    		case 1:insert(x);break;
    		case 2:remove(x);break;
    		case 3:printf("%d\n",rank(x));break;
    		case 4:printf("%d\n",val[kth(x+1)]);break;
    		case 5:printf("%d\n",val[beside(x,1)]);break;
    		case 6:printf("%d\n",val[beside(x,0)]);break;
        }
    }
    return 0;
}

Splay实现序列翻转

模板题目见:【模板】文艺平衡树(Splay)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005;
int fa[maxn],ch[maxn][2],val[maxn],cnt[maxn],sz[maxn],rt,now;
int n,m,l,r,rev[maxn];
int chk(int x){
    return ch[fa[x]][1]==x;
}
void pushup(int x){
    sz[x]=sz[ch[x][0]]+sz[ch[x][1]]+cnt[x];
}
void pushdown(int x){
    if(!rev[x]) return;
    swap(ch[x][0],ch[x][1]);
    if(ch[x][0]) rev[ch[x][0]]^=1;
	if(ch[x][1]) rev[ch[x][1]]^=1;
    rev[x]=0;
}
void rotate(int x){
    int y=fa[x],z=fa[y],k=chk(x),w=ch[x][k^1];
    ch[y][k]=w,fa[w]=y;
    ch[z][chk(y)]=x,fa[x]=z;
    ch[x][k^1]=y,fa[y]=x;
    pushup(y),pushup(x);
}
void splay(int x,int goal=0){
    while(fa[x]!=goal){
        int y=fa[x],z=fa[y];
        pushdown(z),pushdown(y),pushdown(x);//在这道题里可以不要 
        if(z!=goal){
            if(chk(x)==chk(y)) rotate(y);
            else rotate(x);
        }
        rotate(x);
    }
    if(!goal) rt=x;
}
void insert(int x){
    int cur=rt,p=0;
    while(cur&&val[cur]!=x)
        p=cur,cur=ch[cur][x>val[cur]];
    if(cur) cnt[cur]++;
    else{
        cur=++now;
        if(p) ch[p][x>val[p]]=cur;
        ch[cur][0]=ch[cur][1]=0;
        val[cur]=x,fa[cur]=p;
        cnt[cur]=sz[cur]=1;
    }
    splay(cur);
}
int kth(int k){
    int cur=rt;
    while(true){
        pushdown(cur);
        if(ch[cur][0]&&k<=sz[ch[cur][0]])
            cur=ch[cur][0];
        else if(k>sz[ch[cur][0]]+cnt[cur])
            k-=sz[ch[cur][0]]+cnt[cur],cur=ch[cur][1];
        else return cur;
    }
}
void reverse(int l,int r){
    int x=kth(l),y=kth(r+2);
    splay(x),splay(y,x);
    rev[ch[y][0]]^=1;
}
void output(int x){
    pushdown(x);
    if(ch[x][0]) output(ch[x][0]);
    if(val[x]&&val[x]<=n) printf("%d ",val[x]);//要判断虚拟节点
    if(ch[x][1]) output(ch[x][1]);
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=0;i<=n+1;i++) insert(i);
    while(m--)
        scanf("%d%d",&l,&r),reverse(l,r);
    output(rt);
    return 0;
}

其他

对拍器

说明:写入记事本,保存为后缀名为。蝙蝠 的文件,即可执行;其中randdata.exe为数据生成器,code1.exe code2.exe分别为测试程序与标准程序。

@echo off
for /l %%i in (1,1,100) do (
  randdata.exe > in.txt
  code1.exe < in.txt > out1.txt
  code2.exe < in.txt > out2.txt
  fc out1.txt out2.txt > result.txt
  if errorlevel 1 echo %%i:WA! && pause
  if not errorlevel 1 echo %%i:AC!
)
pause

快速输入输出(适用于非负整数)

char in_c;
template<typename T>
void scan(T &in_n){
	for(in_c=getchar();in_c<'0'||in_c>'9';in_c=getchar());
	for(in_n=0;in_c>='0'&&in_c<='9';in_c=getchar()) in_n=in_n*10+in_c-'0';
}
char out_c[25];
int sz_out_c;
template<typename T>
void print(T out_n){
	sz_out_c=0;
	if(!out_n) out_c[sz_out_c++]='0';
	while(out_n) out_c[sz_out_c++]=out_n%10+'0',out_n/=10;
	while(sz_out_c--) putchar(out_c[sz_out_c]);
}

 


主要参考资料:

1.《算法竞赛 - 进阶指南》 -李煜东

2.  我校信息学竞赛讲义       -Mr_He

展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值