极简笔记 Multi-task Self-Supervised Visual Learning

极简笔记 Multi-task Self-Supervised Visual Learning

论文地址: https://arxiv.org/abs/1708.07860

文章核心是利用自监督的任务对模型进行pretrain,再将得到的模型迁移到相关任务进行finetuning(这时候对不更新骨架网络参数,来进行对比,只学习不同任务的head),期望得到的性能接近带有额外label的pretrain模型。

文章提到了多种自监督任务,这些任务的标注可以直接得到而不用额外标注:1. relative position,即随机切两块patch送给网络,回归之间的相对位置;2. 单通道图像上色;3. 生成伪类;4. 针对视频预测哪些像素将会发生移动

文章主要发现为:1. 深层网络比浅层网络在self-supervised任务上更加work;2. multi-task self-supervised在语义要求高的任务上得到的性能比单任务高,但是在语义要求低的任务(比如深度预测),单任务性能甚至超过ImageNet pretrain model;3. ImageNet pretrained model和multi-task self-supervised预训练模型的性能在不同benchmark上会有不同,但比较接近(当然ImageNet pretrain是作为实验性能上限啦);4. 在self-supervise task中对输入进行和谐化处理和对weight进行Lasso约束,没有太大性能提升;5. 结合自监督任务能够

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值