//poj 1840_eqs
//为什么我觉得最重要的思想在于折半枚举!!!对于大数据降低复杂度。
//hash
//
//大致题意:
//给出一个5元3次方程,输入其5个系数,求它的解的个数
//其中系数 ai∈[-50,50] 自变量xi∈[-50,0)∪(0,50]
//注意:
// 若x1 =a, x2=b ,x3=c ,x4=d,x5=e时,与 x1=b, x2=a ,x3=c ,x4 =d, x5=e 代入方程后都得到值0,那么他们视为不同的解。
//
//解题思路:
//
//直观的思路:暴力枚举,O(n^5)
//题目Time Limit=5000ms,1ms大约可以执行1000条语句,那么5000ms最多执行500W次
//每个变量都有100种可能值,那么暴力枚举,5层循环,就是要执行100^5=100E次,等着TLE吧。。。。
//要AC这题,就要对方程做一个变形
//即先枚举x1和x2的组合,把所有出现过的 左值 记录打表,然后再枚举x3 x4 x5的组合得到的 右值,
//如果某个右值等于已经出现的左值,那么我们就得到了一个解
//时间复杂度从 O(n^5)降低到 O(n^2+n^3),大约执行100W次
//
//
//我们先定义一个映射数组hash[],初始化为0
//对于方程左边,当x1=m , x2= n时得到sum,则把用hash[]记录sum : hash[sum]++,表示sum这个值出现了1次
//之所以是记录“次数”,而不是记录“是否已出现”,
//是因为我们不能保证函数的映射为 1对1 映射,更多的是存在 多对1映射。
//例如当 a1=a2时,x1=m , x2= n我们得到了sum,但x1=n , x2= m时我们也会得到sum,但是我们说这两个是不同的解,这就是 多对1 的情况了,
//如果单纯记录sum是否出现过,则会使得 解的个数 减少。
//
//其次,为了使得 搜索sum是否出现 的操作为o(1),我们把sum作为下标,那么hash数组的上界就取决于a1 a2 x1 x2的组合,四个量的极端值均为50
//
//因此上界为 50*50^3+50*50^3=12500000,由于sum也可能为负数,因此我们对hash[]的上界进行扩展,扩展到25000000,
//当sum<0时,我们令sum+=25000000存储到hash[]
//由于数组很大,必须使用全局定义
//
//
//
//同时由于数组很大,用int定义必然会MLE,因此要用char或者short定义数组,推荐short
///short数组的处理很巧妙,方程的转化很巧,考虑到是负数的情况就加上max*2也很巧,好好学习呀。。
//还要手算一遍为什么这么去maxn maxm的值。
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define maxm 25000000
#define maxn 25000002
using namespace std;
//maxm取两边最小的那个的范围。
short Hash[maxn];
int a1,a2,a3,a4,a5;
//要是多重循环的话就要用dfs了吧
int main()
{
while(scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5)!=EOF)
{
// cout<<a1<<" "<<a5<<endl;
memset(Hash,0,sizeof(Hash));
for(int x=-50;x<=50;x++)
{
if(!x)
continue;
for(int y=-50;y<=50;y++)
{
if (!y) continue;
int temp=a1*x*x*x+a2*y*y*y;
temp=-temp;
if(temp<0) temp+=maxm;
Hash[temp]++;
}
}
//cout<<"miao"<<endl;
int solu=0;
for(int r=-50;r<=50;r++)
{
if(!r) continue;
for(int s=-50;s<=50;s++)
{
if(!s) continue;
for(int t=-50;t<=50;t++)
{
if(!t) continue;
int tep=a3*r*r*r+a4*s*s*s+a5*t*t*t;
if(tep<0) tep+=maxm;
//cout<<temp<<endl;
if(Hash[tep])
solu+=Hash[tep];
}
}
}
cout<<solu<<endl;
}
}
POJ 1840 HASH
最新推荐文章于 2023-06-25 08:42:03 发布