POJ 1840 HASH

//poj 1840_eqs
//为什么我觉得最重要的思想在于折半枚举!!!对于大数据降低复杂度。
//hash
//
//大致题意:
//给出一个5元3次方程,输入其5个系数,求它的解的个数
//其中系数 ai∈[-50,50]  自变量xi∈[-50,0)∪(0,50]
//注意:
//  若x1 =a, x2=b ,x3=c ,x4=d,x5=e时,与 x1=b, x2=a ,x3=c ,x4 =d, x5=e 代入方程后都得到值0,那么他们视为不同的解。
//
//解题思路:
//
//直观的思路:暴力枚举,O(n^5)
//题目Time Limit=5000ms,1ms大约可以执行1000条语句,那么5000ms最多执行500W次
//每个变量都有100种可能值,那么暴力枚举,5层循环,就是要执行100^5=100E次,等着TLE吧。。。。
//要AC这题,就要对方程做一个变形
//即先枚举x1和x2的组合,把所有出现过的 左值 记录打表,然后再枚举x3 x4 x5的组合得到的 右值,
//如果某个右值等于已经出现的左值,那么我们就得到了一个解
//时间复杂度从 O(n^5)降低到 O(n^2+n^3),大约执行100W次
//
//
//我们先定义一个映射数组hash[],初始化为0
//对于方程左边,当x1=m  ,  x2= n时得到sum,则把用hash[]记录sum : hash[sum]++,表示sum这个值出现了1次
//之所以是记录“次数”,而不是记录“是否已出现”,
//是因为我们不能保证函数的映射为 1对1 映射,更多的是存在 多对1映射。
//例如当 a1=a2时,x1=m  ,  x2= n我们得到了sum,但x1=n  ,  x2= m时我们也会得到sum,但是我们说这两个是不同的解,这就是 多对1 的情况了,
//如果单纯记录sum是否出现过,则会使得 解的个数 减少。
//
//其次,为了使得 搜索sum是否出现 的操作为o(1),我们把sum作为下标,那么hash数组的上界就取决于a1 a2 x1 x2的组合,四个量的极端值均为50
//
//因此上界为 50*50^3+50*50^3=12500000,由于sum也可能为负数,因此我们对hash[]的上界进行扩展,扩展到25000000,
//当sum<0时,我们令sum+=25000000存储到hash[]
//由于数组很大,必须使用全局定义
//
//
//
//同时由于数组很大,用int定义必然会MLE,因此要用char或者short定义数组,推荐short

///short数组的处理很巧妙,方程的转化很巧,考虑到是负数的情况就加上max*2也很巧,好好学习呀。。

//还要手算一遍为什么这么去maxn maxm的值。
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define maxm 25000000
#define maxn 25000002
using namespace std;
//maxm取两边最小的那个的范围。

short Hash[maxn];
int a1,a2,a3,a4,a5;

//要是多重循环的话就要用dfs了吧
int main()
{
    while(scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5)!=EOF)
    {
       // cout<<a1<<" "<<a5<<endl;
        memset(Hash,0,sizeof(Hash));
        for(int x=-50;x<=50;x++)
        {
            if(!x)
                continue;
            for(int y=-50;y<=50;y++)
            {
                if (!y) continue;
                int temp=a1*x*x*x+a2*y*y*y;
                temp=-temp;
                if(temp<0) temp+=maxm;
                Hash[temp]++;
            }
        }
        //cout<<"miao"<<endl;
        int solu=0;
        for(int r=-50;r<=50;r++)
        {
            if(!r) continue;
            for(int s=-50;s<=50;s++)
            {
                if(!s) continue;
                for(int t=-50;t<=50;t++)
                {
                    if(!t) continue;
                    int tep=a3*r*r*r+a4*s*s*s+a5*t*t*t;
                    if(tep<0) tep+=maxm;
                    //cout<<temp<<endl;
                    if(Hash[tep])
                     solu+=Hash[tep];
                }
            }
        }
        cout<<solu<<endl;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值