Python OpenCV 图像2D直方图,取经之旅第 27 天

Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。

基础知识铺垫

在之前的博客中,我们获取图像直方图的方式都是获取一维直方图,简单说就是只获取一个通道的特征,例如灰度,B 通道,R 通道。

今天要学习的第一个内容是二维直方图,也叫做 2D 直方图,涉及两个特征,其中一个是像素的色调,另一个是饱和度。

有这两个值你应该能猜到,需要提前将图像转换成 HSV 格式。

cv2.calcHist 函数

计算 2D 直方图,使用的函数与之前学习的一样,也是 cv2.calcHist 函数。

如果获取彩色直方图,需要提前将 BGR 转换成 HSV。

函数原型

cv2.calcHist(images, channels, mask, histSize,ranges[, hist[,accumulate]])

参数说明:

  • images: 原图像(图像格式为 uint8 或 float32),当传入函数时应该用中括号 []括起来,例如:[img]
  • channels:[0,1] 需要同时处理 H 和 S 两个通道;
  • bins:[180,256] Hue 通道为 180,S 通道为 256;
  • range:[0,180,0,256],Hue 的取值范围在 0 到 180,饱和度 S 的取值范围在 0 到 256。

测试代码如下:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

def create_2d_hist(image):
    hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
    hist = cv.calcHist([hsv], [0, 1], None, [180, 256],  [0, 180, 0, 256])
    return hist

img = cv.imread('2.jpg')
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)
plt.plot(create_2d_hist(img))

plt.show()

运行效果如下图所示,可以看到 2D 直方图了。
Python OpenCV 图像2D直方图,取经之旅第 25 天
在检索资料的时候,还学习到如下展示直方图的方式,不过效果不如线条的好。

plt.imshow(hist,interpolation = 'nearest')

numpy 中的 2D 直方图

numpy 库也为 2D 直方图提供了一个函数,np.histogram2d函数。

函数原型

由于之前已经学习过 np.histogram 函数了,学习这个 2D 直方图函数理解上就比较容易了。

histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None)

参数说明:

  • x, y:H 通道与 S 通道;
  • bins:bins 数目;
  • range:H 和 S 的范围。

参数更细致的说明可以通过 help(np.histogram2d) 查阅。

测试代码如下:

运行之后,发现结果如下图所示。
Python OpenCV 图像2D直方图,取经之旅第 25 天

上表红线为橡皮擦标记内容,两个表进行对应。H=25,S=20 还有 H=100-150,S=120-100,可以得出黄色,蓝色,紫色区域高值,对应的原图上,结论差不多。
Python OpenCV 图像2D直方图,取经之旅第 25 天
原图如下
Python OpenCV 图像2D直方图,取经之旅第 25 天

官方手册可以阅读:点击跳转

橡皮擦的小节

希望今天的一个小时,你有所收获,我们下篇博客见~

相关阅读


  1. Python 爬虫 100 例教程,超棒的爬虫教程,立即订阅吧
  2. Python 爬虫小课,精彩 9 讲

今天是持续写作的第 67 / 100 天。
如果你有想要交流的想法、技术,欢迎在评论区留言。


如果你想跟博主建立亲密关系,可以关注同名公众号 梦想橡皮擦,近距离接触一个逗趣的互联网高级网虫。
博主 ID:梦想橡皮擦,希望大家点赞评论收藏

梦想橡皮擦 CSDN认证博客专家 高级产品经理 互联网从业者 业余编程爱好者
10 年互联网从业经验,Python 爬虫 100 例作者,蓝桥签约作者,同名公众号【梦想橡皮擦】
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值