(阶段三 dijkstra算法温习 1.6)POJ 2387 Til the Cows Come Home(使用dijkstra算法求单源起点和单源终点的最短路径)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/caihongshijie6/article/details/16367949
/*
 * HDU_1874_1.cpp
 *
 *  Created on: 2013年11月10日
 *      Author: Administrator
 */

#include <iostream>
#include <cstdio>

using namespace std;

const int maxn = 1010;
const int inf = 10000000;
int map[maxn][maxn];
int d[maxn];
int s[maxn];
int n, m; //n: 节点数 ; m: 道路数

int end; //终点
/**
 * dijkstra算法用于有向加权图的最短路径问题
 *
 * 有一个大神总结的很好(至少我个人比较赞同..):
 * 用最小生成树算法来求最小边权和
 * 用dijkstra算法将所有的最小值都存起来
 */
int dijkstra(int v) { //选择v作为源节点,利用dijkstra算法计算源节点v到各节点的最短路径
	int i;
	for (i = 0; i < maxn; ++i) { //初始化
		s[i] = 0; //s[i] = 0,表示i节点未被访问过
		d[i] = map[v][i]; //将d[i]定义为源节点v到节点i的最短距离
	}

	s[v] = 1;
	d[v] = 0;
	int j;
	for (i = 1; i < n; ++i) {
		int min = inf;
		int pos;

		for (j = 1; j <= n; ++j) {
			if (!s[j] && min > d[j]) {
				pos = j;
				min = d[j];
			}
		}

		s[pos] = 1;

		for (j = 1; j <= n; ++j) {
			if (!s[j] && (d[j] > (d[pos] + map[pos][j]))) { //如果j节点没有被访问过&&j节点到源节点的最短路径>pos节点到源节点的最短路径+pos节点到j节点的路径
				d[j] = d[pos] + map[pos][j]; //更新j节点到源节点的最短路径
			}
		}
	}

	return d[n]; //返回所要求的源节点到n节点的最短路径
}

int main() {
	while (scanf("%d%d", &m, &n) != EOF) {
		int i, j;
		for (i = 0; i < maxn; ++i) { //初始化..所有的节点之间都不相通
			for (j = 0; j < maxn; ++j) {
				map[i][j] = inf;
			}
		}

		for(i = 0 ; i < maxn ; ++i){
			map[i][i] = 0;
		}

		for(i = 0 ; i < m ; ++i){
			int a,b,c;
			scanf("%d%d%d",&a,&b,&c);

			if(map[a][b] > c){//***重边的处理方式
				map[a][b] = map[b][a] = c;//**注意,dijkstra问题大多数都是双向的
			}
		}


		int k = dijkstra(1);
		if(k == inf){//如果道路不通
			printf("-1\n");
		}else{
			printf("%d\n",k);
		}
	}

	return 0;
}

没有更多推荐了,返回首页