hjl_heart
码龄7年
关注
提问 私信
  • 博客:161,459
    社区:1,012
    问答:3,420
    165,891
    总访问量
  • 50
    原创
  • 1,789,338
    排名
  • 31
    粉丝
  • 0
    铁粉

个人简介:请多指教~

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-10-27
博客简介:

hjl_heart的博客

博客描述:
一只小白的博客笔记,请各位多多关照
查看详细资料
个人成就
  • 获得172次点赞
  • 内容获得36次评论
  • 获得645次收藏
  • 代码片获得204次分享
创作历程
  • 5篇
    2021年
  • 17篇
    2020年
  • 14篇
    2019年
  • 19篇
    2018年
成就勋章
TA的专栏
  • Linux
    1篇
  • 环境搭建
    4篇
  • Nginx
    1篇
  • AI人工智能
    2篇
  • 经验感悟
  • 算法笔记
    8篇
  • 准备考试专用
    2篇
  • 常见STL容器介绍
    2篇
  • java笔记
    6篇
  • 初级算法竞赛练习笔记
    18篇
  • 基本数据结构
    3篇
  • 算法导论中的问题
    1篇
  • 算法排序
    6篇
  • 数据库
    2篇
  • 计算机网络
    1篇
兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用docker配置nginx的高可用集群(主从模式)

本文参考了这篇博客:https://blog.csdn.net/maxinfan/article/details/80661705搭建nginx的高可用集群按理应该需要至少两台服务器才可以,但如果有docker,则可以只使用一台服务器搭建。本文所用的设备只有一台centos7.6的云服务器。文章目录1. 安装docker2. 下载centos镜像3. 运行并进入centos镜像4. 安装nginx和keepalived5. 修改keepalived配置文件6. 编写检测nginx状态的脚本7. 修改B
原创
发布博客 2021.09.22 ·
2476 阅读 ·
0 点赞 ·
3 评论 ·
15 收藏

Linux防火墙相关操作

Linux服务器是阿里云下的一台CentOS7.6系统CentOS7版本的防火墙默认使用firewall目录1. 查看firewall服务状态2. 查看firewall的状态3. 开启、重启、关闭 firewalld.service服务4. 查看防火墙规则5. 查询、开放、关闭端口6. 设置防火墙开机自启动1. 查看firewall服务状态systemctl status firewalld2. 查看firewall的状态firewall-cmd --state3. 开启、重启、关闭
原创
发布博客 2021.06.26 ·
315 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

在Linux远程服务器上搭建JavaWeb开发环境

在Linux远程服务器上搭建JavaWeb开发环境配置远程linux服务器版本为CentOS7.6使用的是阿里云服务器1. 安装JDK查看yum源中JDK版本 yum list java*使用yum安装JDK1.8 yum -y install java-1.8.0-openjdk*查看是否安装成功java -version若显示以下内容,则安装成功2. 安装MySQL2.1 查看是否已安装mysqlyum list installed mysql*
原创
发布博客 2021.06.26 ·
590 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Redis在远程linux服务器上的下载与安装

0. 配置远程linux服务器版本为CentOS7.6使用的是阿里云服务器1. 下载并安装redis1.0 安装gcc编译器可以使用以下命令安装gcc编译器:yum install gcc-c++可以使用以下命令检查服务器上是否有gcc编译器:gcc --version1.1 在linxu服务器上使用命令:wget http://download.redis.io/releases/redis-6.2.4.tar.gz上面的版本号6.2.4 可以更换成其他版本下载后会在当前目录
原创
发布博客 2021.06.26 ·
452 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

训练AI模型如何调参

本文只是记录在网上看视频看到的如何调参的这个笔记,如有侵权,立即删除。
原创
发布博客 2021.01.20 ·
878 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

什么是Bounding Box、anchor box?

由于最近在看YOLOv3算法,感觉老是不清楚bounding box和anchor box的概念,看完吴恩达的视频后准备写一篇博客记下笔记。em...所以也会用吴恩达视频中的例子来讲。 在视频中,有一张图片,假设要检测的目标类别有3类,行人、轿车、摩托车。我们将图片划分为3*3的网格(grid cells),并且设置有两个anchor boxes(即,图中那两个紫色边框)。这样每次检测一个grid cell,就会输出一个向量y = [Pc, bx, by, bh, bw, c1, c...
原创
发布博客 2020.10.30 ·
43149 阅读 ·
89 点赞 ·
16 评论 ·
285 收藏

通过pip下载的包默认位置在哪

最近学习python需要用pip下载一些包,但是发现下载后在pycharm中根本导入不了。百度之后才发现,pip下载的默认路径是:C:\Users\(自己的用户名)\AppData\Roaming\Python\Python35\site-packages所以我们只要把下载后的文件全部都移动到你对应python版本的默认加载路径中即可:C:\ProgramData\Anaconda3\envs\py35\Lib\site-packages这个路径可能每个人不太一样,我是先下载了Anaco
原创
发布博客 2020.06.10 ·
38261 阅读 ·
10 点赞 ·
2 评论 ·
35 收藏

利用pip或anaconda下载包时的小技巧

因为最近在学习python,所以发现学习过程中可能需要下载包,而下载过程中由于默认都是国外的下载源 所以经常出现Error。搜索了一些别人的资料,发现我们可以更改pip或anaconda的下载源,让其使用清华的镜像下载。比如,使用pip下载包时,可以使用这个镜像:https://pypi.tuna.tsinghua.edu.cn/simple 使用anaconda下载包时,可以使用这个镜像:https://mirrors.tuna.tsinghua.edu.cn/anac...
原创
发布博客 2020.06.07 ·
690 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

最小生成树——克鲁斯卡尔算法

kruskal(克鲁斯卡尔)算法,采用了边贪心的策略,其思想及其简洁,理解难度比prim要低很多。kruskal算法的基本思想为:在初始状态时隐去图中的所有边,这样图中每个顶点都自成一个连通块。之后执行下面的步骤:① 对所有边按边权从小到大进行排序。② 按边权从小到大测试所有边,如果当前测试边所连接的两个顶点不在同一个连通块中,则把这条测试边加入当前最小生成树中;否则,将边舍弃。③...
原创
发布博客 2020.04.18 ·
428 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

2019杭电复试第四题

题目:4.找朋友。假设A是B的朋友,那么B也是A的朋友,C与B为朋友,则C与A也为朋友,另外,自己与自己也是朋友。输入一个数N,代表人数,紧接着输入一个N*N的矩阵,1代表两个人是朋友,0代表两个人不是朋友。求有几个朋友圈。(PS: 算法笔记P332 有道类似的题)例:input:31 1 01 1 00 0 1output:2 思路:...
原创
发布博客 2020.04.15 ·
570 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

最小生成树——普里姆算法

最小生成树是在一个给定的无向图G(V, E)中求一棵树T,使得这棵树拥有图G中的所有顶点,且所有边都是来自图G的边,并且满足整棵树的边权之和最小。求解最小生成树一般有两种算法,即prim算法和kruskal算法。本文主要讲解prim算法。prim算法基本思想:对图G(V,E)设置集合S来存放已被访问的顶点,然后执行n次下面的两个步骤(n为顶点个数):1.每次从集合V-S(即未被访问...
原创
发布博客 2020.04.10 ·
1025 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

杭电2017年考研复试笔试真题三详解

题目三:有一个M*N的材料和一个s*t的模板,从材料中切除模板,求最大能切出来的模板的数量。sample input:3 4a b c dc d a ba c c d2 2a bc dsample out2本文只是为了博主本人考研复习,不保证写的代码和思路一定正确,如有错误之处,还望指出~思路:1.使用DFS来遍历整个大图(材料)2.在DFS中,若在大图...
原创
发布博客 2020.04.09 ·
768 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

递推题——错排公式

这几天都做到了递推题,而且都用到了错排公式,所以在此记一下(不然我脑子里根本记不住,蠢哭...)以HDU 2048为例,请看题:em...由于本人一点也不擅长递推题,所以直接把别人的分析抄上来吧....(侵权即删)若有n张票,则其所有的排列一共有= n! 种排列方式。即所求问题的分母是n!现在的问题就是n张票的错排方式有多少种?1.首先我们考虑如果n-1个人拿的都不是自...
原创
发布博客 2020.03.20 ·
424 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

HDU 2063过山车 ——二分图最大匹配问题

在HDU 2063 过山车中,我们遇到的是二分图最大匹配问题。那么什么是二分图最大匹配呢?我找了很多资料,发现下面的博主写的很详细,在此贴上文章链接。https://blog.csdn.net/qq_38956769/article/details/80238896请务必先看懂文章再来做这道题。下面是我看懂后写下的AC代码:#include<iostream>#in...
原创
发布博客 2020.03.19 ·
152 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

并查集算法模板

并查集支持两个操作:1.合并,即合并两个集合;2.查找,即能判断两个元素是否在一个集合内并查集基本操作:1.初始化for(int i = 0; i < n; i++){ father[i] = i; //在并查集使用前,先让其为自身。因为一开始每个元素都是独立的一个集合}2.查找查找可以用递推或递归实现,主要代码如下://递推实现int f...
原创
发布博客 2020.03.08 ·
154 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

vector的常见用法

若要使用vector,则需要添加头文件:#include<vector>。除此之外,还需要在头文件下面加一句"using namespace std"。1.vector的定义单独定义一个vector:vector<typename> name;其中typename可以使任何基本类型,也可以是STL标准容器。2.vector容器内元素的访问vecto...
原创
发布博客 2020.02.27 ·
207 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

set的常见用法

set,是一个内部自动有序且不含重复元素的容器。set的头文件,即#include<set>,除此之外还需要在头文件下面加上一句:"using namespace std;"1.set的定义单独定义一个set:set<typename> name;其中的typename可以是任何基本类型,例如int、double、char、结构体等,或者STL里的标准...
原创
发布博客 2020.02.19 ·
2143 阅读 ·
6 点赞 ·
0 评论 ·
46 收藏

最短路径之佛洛伊德算法

Floyd算法(即佛洛伊德算法)用来解决全源最短路径问题,即对给定的图G(V,E),求任意两点u,v之间的最短路径长度,时间复杂度是O(n^3)。由于时间复杂度是O(n^3),所以顶点数n一般限制在200以内,因此使用邻接矩阵来实现Floyd算法。Floyd算法基于这样一个事实(要理解此算法最好理解一下此处):如果存在顶点k,使得以k作为中介点时顶点i和顶点j的当前最短距离缩短,则使用顶点k作...
原创
发布博客 2020.02.06 ·
489 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

最短路径之迪杰斯特拉算法模板(二)

上次在最短路径之迪杰斯特拉算法模板(一)中提到上个模板只能适用于最短路径唯一的情况。有时算法竞赛题目会碰到两条及两条以上可以到达最短距离的路径,题目就会给出一个第二标尺(第一标尺是距离),要求在所有最短路径中选择第二标尺最优的一条路径。常见的第二标尺有:1. 给每条边再增加一个边权(例如花费),然后要求在最短路径有多条时要求路径上的花费之和最小。2. 给每个顶点增加一个点权(例如每个城...
原创
发布博客 2020.02.04 ·
291 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

最短路径之迪杰斯特拉算法模板(一)

最短路径是图论中一个很经典的问题:给定图G(V,E),求一条从起点到终点的路径,使得这条路径上经过的所有边的边权之和最小。即,对任意给出的图G(V,E)和起点S、终点T,如何求从S到T的最短路径。这里简单说一下迪杰斯特拉算法(Dijkstra)解决单源点最短路径问题,即给定图G和起点S,通过算法得到S到达其它每个顶点的最短距离。基本思想:对图G(V,E)设置集合S,存放已被访问的顶点,...
原创
发布博客 2020.02.03 ·
494 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多