numpy.random.choice()解析

前言 

numpy.random.choice(a, size=None, replace=True, p=None)

从给定的一维阵列生成随机样本

 

参数:

  • a:一维数组或者整数,如果是ndarray,则从其元素生成随机样本。如果是int,则生成随机样本,就像a是np.arange(a)
  • size:整数的int或元组,可选,输出形状。如果给定的形状是例如(m,n,k),则绘制m * n * k个样本。默认值为None,在这种情况下返回单个值。
  • replace:boolean类型,可选。指定sample是否有替代品
  • p:一维数组,可选,指定与a中每个条目相关的概率。如果没有给出,则样本假设在a中的所有条目上均匀分布。

 

返回值

samples:单值或者一维数组,返回生成的随机样本

 

 

样例

 

从np.arange(5)生成一个大小为3的随机样本:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

从大小为3的np.arange(5)生成非均匀随机样本

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

从np.arange(5)生成大小为3的均匀随机样本,无需替换:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

从np.arange(5)生成大小为3的非均匀随机样本,无需替换:

np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])

上述任何一个都可以用任意数组来重复,而不仅仅是整数。例如:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],
      dtype='|S11')

 

参考资料:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值