前言
numpy.random.choice(a, size=None, replace=True, p=None)
从给定的一维阵列生成随机样本
参数:
- a:一维数组或者整数,如果是ndarray,则从其元素生成随机样本。如果是int,则生成随机样本,就像a是np.arange(a)
- size:整数的int或元组,可选,输出形状。如果给定的形状是例如(m,n,k),则绘制m * n * k个样本。默认值为None,在这种情况下返回单个值。
- replace:boolean类型,可选。指定sample是否有替代品
- p:一维数组,可选,指定与a中每个条目相关的概率。如果没有给出,则样本假设在a中的所有条目上均匀分布。
返回值
samples:单值或者一维数组,返回生成的随机样本
样例
从np.arange(5)生成一个大小为3的随机样本:
>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)
从大小为3的np.arange(5)生成非均匀随机样本
>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])
从np.arange(5)生成大小为3的均匀随机样本,无需替换:
>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]
从np.arange(5)生成大小为3的非均匀随机样本,无需替换:
np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])
上述任何一个都可以用任意数组来重复,而不仅仅是整数。例如:
>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],
dtype='|S11')
参考资料:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html