第一反应,递归求解,貌似很简单。但是不幸,超时 [java] view plain copy public int climbStairs1(int n) { if (n == 1 || n == 2) { return n; } return climbStairs1(n-1) + climbStairs1(n-2); } 为什么超时呢?因为有很多重复的计算,以n=5为例,递归图如下所示: 如果所示,标颜色的需要重复递归调用计算,所以动态规划的思想就是把重叠子问题存储下来,下次调用直接查表即可。比如在第一次递归调用时,n=3已经将结果计算出来,在n=4的时候就不需要就算了,上代码: [java] view plain copy public int climbStairs(int n) { if (n == 0 || n == 1 || n == 2) { return n; } int[] r = new int[n+1]; r[1] = 1; r[2] = 2; for (int i = 3; i <= n; i++) { r[i] = r[i-1] + r[i-2]; } return r[n]; } 第三种方法: 同样采用动态规划方法 但是不采用新的数组存放每次多次算法的值,因为只要取出最后一个数就可以。 因此可以直接递推相加。 class Solution { public int climbStairs(int n) { if (n==0||n==1||n==2) return n; int one_step=1; int two_step=2; int all_ways=0; for (int i=2;i<n;i++){ all_ways=one_step+two_step; one_step=two_step; two_step=all_ways; } return all_ways; } }