- 博客(4)
- 资源 (5)
- 收藏
- 关注
原创 零基础导入自己YOLOv3或YOLOv3-Tiny模型
前言:通过零基础入门darknet-YOLO3及YOLOv3-Tiny文档操作,我们已经有了自己训练的YOLO3或YOLOv3-Tiny模型,接下来一步步演示如何转换自己的模型,并适配进我们khadas VIM3 开发板android平台的khadas_android_npu_app。关于VIM3 ubuntu平台请参考此文档1。一,转换模型模型转换流程图:image1942×605 164 KB1,导入模型当前模型转换过程都是在 acuity-toolkit 目录下进行:...
2021-08-03 10:58:40 1731 2
原创 零基础入门darknet-YOLO3或YOLOv3-Tiny模型训练
前言:有兴趣的可以先查看官网主页。接下来从零开始实现自己的一个简单demo:自动识别库里和杜兰特,从而入门darknet-YOLO3世界。总体来说,分为如下步骤: 数据集构建,训练模型,测试模型,评估模型。一. 数据集构建1. 收集图片与编号这里的图片是从网上下载库里和杜兰特的图片。为了规划数据,减少出错的可能性,先给自己的图片编一个合理的序号,比如0001~0999。由于时间原因,只下载了68张图片,当然,这些数据对于训练一个很好的模型是远远不够的。2. 标注数据windows下lab
2021-08-03 10:47:04 3627
原创 Darknet 评估训练好的网络的性能
前言:训练一个网络,需要评价这个网络,并根据评价的结果想一下为什么是这样,怎样去优化这个网络,这样才是一个闭环。如何评价训练好的网络首先网络有一个参数是loss值,这反应了你训练好的网络得到的结果和真实值之间的差距。查看loss曲线随着迭代次数的增多,如何变化,有助于查看训练是否过拟合,是否学习率太小。一. 生成loss变化曲线1, 训练时保存log文件nohup ./darknet detector train khadas_ai/khadas_ai.data khadas_ai/y
2021-08-03 10:43:41 753
原创 windows下labelImg标注工具使用介绍
前言:用于深度网络训练的数据集做标注的方法和工具有好多,像Labelme、labelImg、yolo_mark、Vatic、Sloth等等,此处只介绍其中的一种标注工具:labelImg。一、labelImg工具下载windows下使用已经编译好的labelImg.exe。注意:若 labelImg 打开闪退,进入C盘->用户->自己电脑用户名下,把.labelImgSettings.pkl文件删除,然后再打开程序。二、labelImg工具使用方法1,双击labelImg执行.
2021-08-03 10:35:47 1236
fio-3.29--Android12可执行文件
2022-03-22
ethtool.zip
2020-05-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人