pandas教程[6]计数统计 | pandas教程:[7]筛选计数统计

>>> import matplotlib as plt
>>> import pandas as pd
>>> df=pd.read_csv(r'C:\Users\Administrator\Desktop\DDD.csv')
>>> #尝试打印日报 并根据地区统计申请数量
>>> counts=df[u'mOrgName'].value_counts()
\
>>> print(counts)
成都    7
广州    6
深圳    6
上海    3
Name: mOrgName, dtype: int64
>>> #制图和存图
>>> plt=counts.plot(kind='bar').get_figure()
>>> plt.savefig('d:/plot.png')

结果:地区没有显示

 

---------------------------------------------------------------7----------------------------------------------------------

#统根据地区统计申请金额大于一万的人数
>>> good=df[df[u'aApprovalMount']>10000]
>>> print (good)
      eId  aCustomerId aCustomerName   ...   mOrgName  aApproval aStatus
1   29733       182128           严毅韬   ...         成都          3       2
7   29739       182134            冉珊   ...         成都          3       2
8   29740       182137           程玉恒   ...         广州          3       2
9   29741       182138           邓莎莎   ...         成都          3       2
10  29742       182141           金汇龙   ...         上海          3       2
13  29745       182146            程波   ...         成都          3       2
15  29747       181598           张翠容   ...         深圳          3       2
16  29748       182143           张乔伟   ...         上海          3       2
17  29750       182067            张忆   ...         成都          3       2
20  29753       182158            周婧   ...         上海          3       2

[10 rows x 10 columns]
>>> good_counts=good['mOrgName'].value_counts()
>>> print (good_counts)
成都    5
上海    3
广州    1
深圳    1
Name: mOrgName, dtype: int64
>>> total_counts=df['mOrgName'].value_counts()
>>> print(total_counts)
成都    7
广州    6
深圳    6
上海    3
Name: mOrgName, dtype: int64
>>> per=good_counts/total_counts
>>> print(per)
上海    1.000000
广州    0.166667
成都    0.714286
深圳    0.166667
Name: mOrgName, dtype: float64

可以拿申请超过10000的除以全部求比率。

可以一起除噢

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值