>>> import matplotlib as plt
>>> import pandas as pd
>>> df=pd.read_csv(r'C:\Users\Administrator\Desktop\DDD.csv')
>>> #尝试打印日报 并根据地区统计申请数量
>>> counts=df[u'mOrgName'].value_counts()
\
>>> print(counts)
成都 7
广州 6
深圳 6
上海 3
Name: mOrgName, dtype: int64
>>> #制图和存图
>>> plt=counts.plot(kind='bar').get_figure()
>>> plt.savefig('d:/plot.png')
结果:地区没有显示
---------------------------------------------------------------7----------------------------------------------------------
#统根据地区统计申请金额大于一万的人数
>>> good=df[df[u'aApprovalMount']>10000]
>>> print (good)
eId aCustomerId aCustomerName ... mOrgName aApproval aStatus
1 29733 182128 严毅韬 ... 成都 3 2
7 29739 182134 冉珊 ... 成都 3 2
8 29740 182137 程玉恒 ... 广州 3 2
9 29741 182138 邓莎莎 ... 成都 3 2
10 29742 182141 金汇龙 ... 上海 3 2
13 29745 182146 程波 ... 成都 3 2
15 29747 181598 张翠容 ... 深圳 3 2
16 29748 182143 张乔伟 ... 上海 3 2
17 29750 182067 张忆 ... 成都 3 2
20 29753 182158 周婧 ... 上海 3 2
[10 rows x 10 columns]
>>> good_counts=good['mOrgName'].value_counts()
>>> print (good_counts)
成都 5
上海 3
广州 1
深圳 1
Name: mOrgName, dtype: int64
>>> total_counts=df['mOrgName'].value_counts()
>>> print(total_counts)
成都 7
广州 6
深圳 6
上海 3
Name: mOrgName, dtype: int64
>>> per=good_counts/total_counts
>>> print(per)
上海 1.000000
广州 0.166667
成都 0.714286
深圳 0.166667
Name: mOrgName, dtype: float64
可以拿申请超过10000的除以全部求比率。
可以一起除噢