Policy Gradient 和 Value based 方法的区别 [Value Based 方法](1) Value based的方法的背景知识对于MDP, S,A,P,R,r来说,首先是定义了value function, V(s)和Q(s,a),在有了value function的定义以后,就可以得到Optimal valueOptimal policy然后又引出了Bellman Equation,Bellman Equa...
Mask RCNN, Faster RCNN, Yolo3, SSD 在由Feature map生成坐标和类别数据的区别 这里要总结一下这几个算法之间的区别,就是由feature map卷积到坐标数据和类别数据的过程,有什么区别
Mask RCNN 源代码解析 (1) - 整体思路 Mask RCNN 属于 RCNN这一系列的应该是比较最终的版本,融合多种算法的思想,这里对Mask RCNN从源代码进行解析,主要写几篇文章,一个总结大的思路,其他文章整理细节。这篇文章为了简单,主要从前向传播和后向传播,分两部分进行介绍,主要以数据的流动为主线,分析流程图和核心函数。主要参考的代码是Pytorch的mask RCNN版本, 这个版本的Mask RCNN代码只支持一个图片处理...
C++ 智能指针 首先明确C++ 智能指针本身不是指针,而是一个类,这个类构建的时候是用指针作为参数传递进入,在使用的时候可以用起来像指针一样使用,感觉最主要的功能是完成了指针所指向原始对象的内存管理,当对象最后生命周期结束的时候,可以用来释放指针所指向原始对象所附带的内存。换句话说,就是可以只是需要new一个对象,然后在最后不需要来delete这个对象,由智能指针自己来完成这个动作。(1) 构造函数: 这个类...
Caffe (2) SyncedMemory内存管理机制 在Caffe中,blob是对于上层空间的数据管理存储对象,对于上层来说的话,大部分时候是直接取blob对象的指针来用,如果不考虑GPU的情况下,实际上很简单,就是返回指针就行,但是问题是通常的数据是在GPU和CPU上同时存在,需要两个数据在不同的设备上进行同步,那么SyncedMemory的作用是实际上在管理实际数据。对于Blob中,封装的3个SyncedMemory对象的智能指针:【大的逻辑...
Caffe (1) Blob 层代码解读 Caffe 中所有的数据都是存放在Blob对象中,废话不多说,直接上代码,头文件实际上blob是对SyncedMemory对象做了一次封装,意思是在内部,做了几个SyncedMemory类型变量指针,对于CPU和GPU内存管理最为核心的部分是在SyncedMemory对象中,后续将详细介绍这个部分。(1)头文件#ifndef CAFFE_BLOB_HPP_#define CAFFE...
数学基础 (2) - 熵相关以及优化目标函数 总结一下遇到的各种名词和关键字:(1)熵相关: 自信息量,熵,交叉熵(Cross Entropy),相对熵或KL散度(Realtive Entropy),经验条件熵(2)似然相关: Max Like Hood, Max Log Like Hood下面分别对这些东西进行总结,经常会有对同一个概念的不同角度解释,下面也会总结各种不同角度的解释。可能符号上面有点不是很统一。 【自信...
Python 连续读图片的异常处理 大批量处理数据时,若因个别图像错误导致代码中断,从头再来比较浪费时间对未成功读入的图像跳过(读图 import cv2)for i in range(1,1000): image = cv2.imdecode(np.fromfile('xxx.jpg'),dtype=np.uint8),-1) try: image.shape except: ...
机器学习(2) - SVM 推导 SVM的核函数,这里还剩一个核函数。整个SVM比较难以理解的地方就是拉格朗日对偶求极值。整体感觉难点就是一个对偶性的问题,数学推导比较麻烦,坑太深,适合理论研究。网友的一些关于数学的理解和讨论还是比较有意思。【Winston SVM课程总结】【整体流程总结】【对偶性,优化目标推导】【参考链接】1 : 这篇博客主要介绍了对偶性和拉格朗日乘子,Duality ...
神经网络求导与不能求导的情况 关于神经网络的求导和不可求导 ,目前主要是两个地方遇到过,一个是karpathy在Policy Gradient的文章中有一节专门讲了【1: Non-differentiable computation in Neural Networks - Andrej Karpathy】这个标题讲的比较清楚,翻译一下,说的是 “神经网络中的不可求导操作”, 根据这句话可以直接知道(1) 不可求...
损失函数汇总 这篇文章总结一下和loss相关的问题,总结一下loss所牵涉的东西(1) Cross Entropy 交叉熵来构建loss(2) 两个概率的 KL距离 构建loss(3) 对于概率值直接取log(4) 最小均方误差...