目录
- A A A组
- B B B组
- 4.若 f ( x ) = x 5 e 6 x f(x)=x^5e^{6x} f(x)=x5e6x,则 f ( 101 ) ( 0 ) = f^{(101)}(0)= f(101)(0)=______。
- 5.设 f ( x ) = x 1 − x 4 f(x)=\cfrac{x}{1-x^4} f(x)=1−x4x,则 f ( 101 ) ( 0 ) = f^{(101)}(0)= f(101)(0)=______。
- 16.设 f ( x ) = g ′ ( x ) , g ( x ) = { e x − 1 x , x ≠ 0 , 1 , x = 0 , f(x)=g'(x),g(x)=\begin{cases}\cfrac{e^x-1}{x},&x\ne0,\\1,&x=0,\end{cases} f(x)=g′(x),g(x)=⎩⎨⎧xex−1,1,x=0,x=0,求 f ( n ) ( 0 ) f^{(n)}(0) f(n)(0)。
- C C C组
- 写在最后
A A A组
11.设 y = ln 1 − x 1 + x 2 y=\ln\sqrt{\cfrac{1-x}{1+x^2}} y=ln1+x21−x,求 y ′ ′ ∣ x = 0 y''\biggm\vert_{x=0} y′′∣∣∣∣x=0。
解
y
=
ln
1
−
x
1
+
x
2
=
1
2
[
ln
(
1
−
x
)
−
ln
(
1
+
x
2
)
]
,
y
′
=
1
2
(
−
1
1
−
x
−
2
x
1
+
x
2
)
=
−
1
2
(
1
1
−
x
+
2
x
1
+
x
2
)
,
y
′
′
=
−
1
2
[
1
(
1
−
x
)
2
+
2
⋅
1
−
x
2
(
1
+
x
2
)
2
]
,
y
′
′
∣
x
=
0
=
−
3
2
.
\begin{aligned} &y=\ln\sqrt{\cfrac{1-x}{1+x^2}}=\cfrac{1}{2}[\ln(1-x)-\ln(1+x^2)],\\ &y'=\cfrac{1}{2}\left(\cfrac{-1}{1-x}-\cfrac{2x}{1+x^2}\right)=-\cfrac{1}{2}\left(\cfrac{1}{1-x}+\cfrac{2x}{1+x^2}\right),\\ &y''=-\cfrac{1}{2}\left[\cfrac{1}{(1-x)^2}+2\cdot\cfrac{1-x^2}{(1+x^2)^2}\right],\\ &y''\biggm\vert_{x=0}=-\cfrac{3}{2}. \end{aligned}
y=ln1+x21−x=21[ln(1−x)−ln(1+x2)],y′=21(1−x−1−1+x22x)=−21(1−x1+1+x22x),y′′=−21[(1−x)21+2⋅(1+x2)21−x2],y′′∣∣∣∣x=0=−23.
(这道题主要利用了拆项求解)
B B B组
4.若 f ( x ) = x 5 e 6 x f(x)=x^5e^{6x} f(x)=x5e6x,则 f ( 101 ) ( 0 ) = f^{(101)}(0)= f(101)(0)=______。
解
f
(
101
)
(
0
)
=
∑
k
=
0
101
C
101
k
(
x
5
)
(
k
)
(
e
6
x
)
(
101
−
k
)
∣
x
=
0
=
5
!
6
96
C
101
5
=
101
!
96
!
6
96
.
\begin{aligned} f^{(101)}(0)&=\sum\limits_{k=0}^{101}\mathrm{C}^k_{101}(x^5)^{(k)}(e^{6x})^{(101-k)}\biggm\vert_{x=0}\\ &=5!6^{96}\mathrm{C}^5_{101}=\cfrac{101!}{96!}6^{96}. \end{aligned}
f(101)(0)=k=0∑101C101k(x5)(k)(e6x)(101−k)∣∣∣∣x=0=5!696C1015=96!101!696.
(这道题主要利用了泰勒展开式求解)
5.设 f ( x ) = x 1 − x 4 f(x)=\cfrac{x}{1-x^4} f(x)=1−x4x,则 f ( 101 ) ( 0 ) = f^{(101)}(0)= f(101)(0)=______。
解 f ( x ) = x 1 − 2 x 4 = x ∑ n = 0 ∞ ( 2 x 4 ) n = ∑ n = 0 ∞ 2 n x 4 n + 1 ( 2 x 4 < 1 ) f(x)=\cfrac{x}{1-2x^4}=x\sum\limits_{n=0}^\infty(2x^4)^n=\sum\limits_{n=0}^\infty2^nx^{4n+1}(2x^4<1) f(x)=1−2x4x=xn=0∑∞(2x4)n=n=0∑∞2nx4n+1(2x4<1),又 f ( 101 ) ( 0 ) 101 ! = 2 25 \cfrac{f^{(101)}(0)}{101!}=2^{25} 101!f(101)(0)=225,则 f ( 101 ) ( 0 ) = 101 ! ⋅ 2 25 f^{(101)}(0)=101!\cdot2^{25} f(101)(0)=101!⋅225。(这道题主要利用了泰勒展开式求解)
16.设 f ( x ) = g ′ ( x ) , g ( x ) = { e x − 1 x , x ≠ 0 , 1 , x = 0 , f(x)=g'(x),g(x)=\begin{cases}\cfrac{e^x-1}{x},&x\ne0,\\1,&x=0,\end{cases} f(x)=g′(x),g(x)=⎩⎨⎧xex−1,1,x=0,x=0,求 f ( n ) ( 0 ) f^{(n)}(0) f(n)(0)。
解 由泰勒展开式,
e
x
−
1
x
=
1
x
[
∑
n
=
0
∞
x
n
n
!
−
1
]
=
∑
n
=
1
∞
x
n
−
1
n
!
,
x
≠
0
\cfrac{e^x-1}{x}=\cfrac{1}{x}\left[\sum\limits_{n=0}^\infty\cfrac{x^n}{n!}-1\right]=\sum\limits_{n=1}^\infty\cfrac{x^{n-1}}{n!},x\ne0
xex−1=x1[n=0∑∞n!xn−1]=n=1∑∞n!xn−1,x=0,且
(
∑
n
=
1
∞
x
n
−
1
n
!
)
∣
x
=
0
=
1
\left(\sum\limits_{n=1}^\infty\cfrac{x^{n-1}}{n!}\right)\biggm\vert_{x=0}=1
(n=1∑∞n!xn−1)∣∣∣∣x=0=1,故
g
(
x
)
=
∑
n
=
1
∞
x
n
−
1
n
!
=
∑
n
=
0
∞
x
n
(
n
+
1
)
!
,
f
(
x
)
=
g
′
(
x
)
=
∑
n
=
1
∞
n
x
n
−
1
(
n
+
1
)
!
=
∑
n
=
0
∞
(
n
+
1
)
x
n
(
n
+
2
)
!
.
g(x)=\sum\limits_{n=1}^\infty\cfrac{x^{n-1}}{n!}=\sum\limits_{n=0}^\infty\cfrac{x^{n}}{(n+1)!},\\ f(x)=g'(x)=\sum\limits_{n=1}^\infty\cfrac{nx^{n-1}}{(n+1)!}=\sum\limits_{n=0}^\infty\cfrac{(n+1)x^{n}}{(n+2)!}.
g(x)=n=1∑∞n!xn−1=n=0∑∞(n+1)!xn,f(x)=g′(x)=n=1∑∞(n+1)!nxn−1=n=0∑∞(n+2)!(n+1)xn.
根据展开式的唯一性,有
f
(
n
)
(
0
)
n
!
=
n
+
1
(
n
+
2
)
!
\cfrac{f^{(n)}(0)}{n!}=\cfrac{n+1}{(n+2)!}
n!f(n)(0)=(n+2)!n+1,故
f
(
n
)
(
0
)
=
1
n
+
2
(
n
=
1
,
2
,
⋯
)
f^{(n)}(0)=\cfrac{1}{n+2}(n=1,2,\cdots)
f(n)(0)=n+21(n=1,2,⋯)。(这道题主要利用了泰勒展开式求解)
C C C组
6.设 y = arcsin x y=\arcsin x y=arcsinx。
(1)证明其满足方程 ( 1 − x 2 ) y ( n + 2 ) − ( 2 n + 1 ) x y ( n + 1 ) − n 2 y ( n ) = 0 ( n ⩾ 0 ) (1-x^2)y^{(n+2)}-(2n+1)xy^{(n+1)}-n^2y^{(n)}=0(n\geqslant0) (1−x2)y(n+2)−(2n+1)xy(n+1)−n2y(n)=0(n⩾0);
解 由 y ′ = 1 1 − x 2 , y ′ ′ = x ( 1 − x 2 ) 3 2 y'=\cfrac{1}{\sqrt{1-x^2}},y''=\cfrac{x}{(1-x^2)^{\frac{3}{2}}} y′=1−x21,y′′=(1−x2)23x,得 ( 1 − x 2 ) y ′ ′ − x y ′ = 0 (1-x^2)y''-xy'=0 (1−x2)y′′−xy′=0。由莱布尼兹公式,有 ( 1 − x 2 ) y ( n + 2 ) − 2 n x y ( n + 1 ) − n ( n − 1 ) y ( n ) − x y ( n + 1 ) − n y ( n ) = 0 (1-x^2)y^{(n+2)}-2nxy^{(n+1)}-n(n-1)y^{(n)}-xy^{(n+1)}-ny^{(n)}=0 (1−x2)y(n+2)−2nxy(n+1)−n(n−1)y(n)−xy(n+1)−ny(n)=0,即 ( 1 − x 2 ) y ( n + 2 ) − ( 2 n + 1 ) x y ( n + 1 ) − n 2 y ( n ) = 0 ( n ⩾ 0 ) (1-x^2)y^{(n+2)}-(2n+1)xy^{(n+1)}-n^2y^{(n)}=0(n\geqslant0) (1−x2)y(n+2)−(2n+1)xy(n+1)−n2y(n)=0(n⩾0)。(这道题主要利用了特殊值求解)
(2)求 y ( n ) ∣ x = 0 y^{(n)}\biggm\vert_{x=0} y(n)∣∣∣∣x=0。
解 在上式中令
x
=
0
x=0
x=0,得
y
(
n
+
2
)
(
0
)
=
n
2
y
(
n
)
(
0
)
(
n
=
1
,
2
,
⋯
)
y^{(n+2)}(0)=n^2y^{(n)}(0)(n=1,2,\cdots)
y(n+2)(0)=n2y(n)(0)(n=1,2,⋯)。由于
y
(
0
)
(
0
)
=
y
(
0
)
=
0
y^{(0)}(0)=y(0)=0
y(0)(0)=y(0)=0,从而
y
(
2
k
)
(
0
)
=
0
y^{(2k)}(0)=0
y(2k)(0)=0。又因为
y
′
(
0
)
=
1
y'(0)=1
y′(0)=1,从而
y
(
2
k
+
1
)
(
0
)
=
(
2
k
−
1
)
2
y
(
2
k
−
1
)
(
0
)
=
⋯
=
(
2
k
−
1
)
2
(
2
k
−
3
)
2
⋯
3
2
⋅
1
2
y
′
(
0
)
=
[
(
2
k
−
1
)
!
!
]
2
(
k
=
1
,
2
,
⋯
)
.
\begin{aligned} y^{(2k+1)}(0)&=(2k-1)^2y^{(2k-1)}(0)=\cdots=(2k-1)^2(2k-3)^2\cdots3^2\cdot1^2y'(0)\\ &=[(2k-1)!!]^2(k=1,2,\cdots). \end{aligned}
y(2k+1)(0)=(2k−1)2y(2k−1)(0)=⋯=(2k−1)2(2k−3)2⋯32⋅12y′(0)=[(2k−1)!!]2(k=1,2,⋯).
(这道题主要利用了递推式求解)
7.设 n n n为正整数, f ( x ) = ln ( 1 + x 2 − x ) f(x)=\ln(\sqrt{1+x^2}-x) f(x)=ln(1+x2−x),求导数 f ( 2 n + 1 ) ( 0 ) f^{(2n+1)}(0) f(2n+1)(0)。
解 因为
f
′
(
x
)
=
1
1
+
x
2
−
x
(
x
1
+
x
2
−
1
)
=
−
1
1
+
x
2
f'(x)=\cfrac{1}{\sqrt{1+x^2}-x}\left(\cfrac{x}{\sqrt{1+x^2}}-1\right)=-\cfrac{1}{\sqrt{1+x^2}}
f′(x)=1+x2−x1(1+x2x−1)=−1+x21,所以
1
+
x
2
f
′
(
x
)
=
−
1
,
1
+
x
2
f
′
′
(
x
)
+
x
1
+
x
2
f
′
(
x
)
=
0
\sqrt{1+x^2}f'(x)=-1,\sqrt{1+x^2}f''(x)+\cfrac{x}{\sqrt{1+x^2}}f'(x)=0
1+x2f′(x)=−1,1+x2f′′(x)+1+x2xf′(x)=0,即
(
1
+
x
2
)
f
′
′
(
x
)
+
x
f
′
(
x
)
=
0
(1+x^2)f''(x)+xf'(x)=0
(1+x2)f′′(x)+xf′(x)=0。方程两边对
x
x
x求
n
−
1
n-1
n−1次导,并利用莱布尼兹公式,得
(
1
+
x
2
)
f
(
n
+
1
)
(
x
)
+
2
(
n
−
1
)
x
f
(
n
)
(
x
)
+
(
n
−
1
)
(
n
−
2
)
f
(
n
−
1
)
(
x
)
+
x
f
(
n
)
(
x
)
+
(
n
−
1
)
f
(
n
−
1
)
(
x
)
=
0
(1+x^2)f^{(n+1)}(x)+2(n-1)xf^{(n)}(x)+(n-1)(n-2)f^{(n-1)}(x)+xf^{(n)}(x)+(n-1)f^{(n-1)}(x)=0
(1+x2)f(n+1)(x)+2(n−1)xf(n)(x)+(n−1)(n−2)f(n−1)(x)+xf(n)(x)+(n−1)f(n−1)(x)=0。
将
x
=
0
x=0
x=0代入上式,得
f
(
n
+
1
)
(
0
)
=
−
(
n
−
1
)
2
f
(
n
−
1
)
f^{(n+1)}(0)=-(n-1)^2f^{(n-1)}
f(n+1)(0)=−(n−1)2f(n−1)。把
n
n
n换为
2
n
2n
2n,并由此递推,得
f
(
2
n
+
1
)
(
0
)
=
−
(
2
n
−
1
)
2
f
(
2
n
−
1
)
(
0
)
,
f
(
2
n
−
1
)
(
0
)
=
−
(
2
n
−
3
)
2
f
(
2
n
−
3
)
(
0
)
,
⋯
⋯
f
′
′
′
(
0
)
=
−
f
′
(
0
)
=
−
1.
f^{(2n+1)}(0)=-(2n-1)^2f^{(2n-1)}(0),\\ f^{(2n-1)}(0)=-(2n-3)^2f^{(2n-3)}(0),\\ \cdots\cdots\\ f'''(0)=-f'(0)=-1.
f(2n+1)(0)=−(2n−1)2f(2n−1)(0),f(2n−1)(0)=−(2n−3)2f(2n−3)(0),⋯⋯f′′′(0)=−f′(0)=−1.
由此,得
f
(
2
n
+
1
)
(
0
)
=
(
−
1
)
n
[
(
2
n
−
1
)
!
!
]
2
f^{(2n+1)}(0)=(-1)^n[(2n-1)!!]^2
f(2n+1)(0)=(−1)n[(2n−1)!!]2。(这道题主要利用了构造方程求解)
写在最后
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。

593

被折叠的 条评论
为什么被折叠?



