hongbin_xu的博客

新的起点,不忘初心

论文笔记:KD-Net

Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models 1、四个问题 要解决什么问题? 3D点云识别任务。 用了什么方法解决? 参考KD树的结构,提出了一种新的树形结构的神经网络,用...

2019-06-27 21:41:06

阅读数 84

评论数 1

论文笔记:PRIN: Pointwise Rotation-Invariant Networks

PRIN: Pointwise Rotation-Invariant Networks 1、四个问题 要解决什么问题? 使用特殊结构的神经网络来提取具有旋转不变性的点云特征。 用了什么方法解决? 提出了一套新的网络结构:Pointwise Rotation-Invariant Netwo...

2019-06-11 17:43:15

阅读数 101

评论数 0

论文笔记:Group Equivariant Convolutional Networks

Group Equivariant Convolutional Networks 1、四个问题 要解决什么问题? 对卷积神经网络进行扩展,并提出一个在特定的变换(旋转、平移等,也可表示为一个特殊的群)下具有等变性的网络。 用了什么方法解决? 提出了一种新的卷积神经网络结构——群等变卷积神...

2019-06-08 13:42:55

阅读数 113

评论数 0

论文笔记:Spherical CNN

Spherical CNN 1、四个问题 要解决什么问题? 3D场景下旋转不变性特征的提取。 用了什么方法解决? 提出了球形卷积操作,也叫作球形互相关(spherical cross-correlation)。球形卷积具有旋转不变性。 为了增强计算效率,使用FFT(Fast Fourie...

2019-06-03 20:40:27

阅读数 115

评论数 0

论文笔记:Semi-Supervised Classification with Graph Convolutional Networks

Semi-Supervised Classification with Graph Convolutional Networks 1、四个问题 要解决什么问题? 半监督任务。给定一个图,其中一部节点已知标签,剩下的未知,要对整个图上的节点进行分类。 用了什么方法解决? 提出了一种卷积神经...

2019-04-29 10:45:57

阅读数 323

评论数 0

论文笔记:CycleGAN

CycleGAN 1、四个问题 要解决什么问题? 图像翻译任务(image-to-image translation problems),域转换任务。 用了什么方法解决? 提出了CycleGAN的网络结构。 目的是:通过使用一组对抗损失,学习到一个映射G:X→YG: X \rightar...

2019-03-22 16:19:23

阅读数 401

评论数 0

论文笔记:Geo-CNN

Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN GeoCNN 1、四个问题 要解决什么问题? 3D点云具有不规则的结构,不能输入普通的CNN中。因此,要提出可以直接将点云作为输入的CNN网络。 许多研究对局...

2019-02-16 21:20:05

阅读数 756

评论数 0

论文笔记:MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks MTCNN 1、四个问题 要解决什么问题? 人脸检测(face detection)和人脸对齐(face alignment)...

2018-12-27 19:13:08

阅读数 577

评论数 1

论文笔记:DGCNN(EdgeConv)

Dynamic Graph CNN for Learning on Point Clouds DGCNN 1、四个问题 要解决什么问题? 使用深度学习处理3D点云。 设计一个可以直接使用点云作为输入的CNN架构,同时可以获取足够的局部信息,可适用于分类、分割等任务。 用了什么方...

2018-12-26 10:41:30

阅读数 2727

评论数 12

论文笔记:Image Caption(Show, attend and tell)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Show, Attend and Tell 1、四个问题 要解决什么问题? Image Caption(自动根据图像生成一段文字描述)。 ...

2018-12-06 15:18:22

阅读数 740

评论数 3

论文笔记:Image Caption(Show and Tell)

Show and Tell: A Neural Image Caption Generator Show and Tell 1、四个问题 要解决什么问题? Image Caption(自动根据图像生成一段文字描述)。 用了什么方法解决? 作者提出了一个基于深度循环架构的生成式模型。 训练...

2018-12-04 17:45:16

阅读数 592

评论数 0

论文笔记:PointNet

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation PointNet 1、四个问题 要解决什么问题? 3D点云是一种很重要的几何数据结构。由于其存在空间关系不规则的特点,因此不能直接将已有的图...

2018-11-29 19:01:32

阅读数 714

评论数 0

论文笔记:ShuffleNet v2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design ShuffleNet v2 1、四个问题 要解决什么问题? 轻量化模型。 用了什么方法解决? 文中提出了几条设计轻量化模型的实践准则(...

2018-11-20 20:36:36

阅读数 541

评论数 1

论文笔记:ShuffleNet v1

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices ShuffleNet v1 1、四个问题 要解决什么问题? 为算力有限的嵌入式场景下专门设计一个高效的神经网络架构。 用了什...

2018-11-20 15:51:12

阅读数 363

评论数 0

论文笔记:Git Loss

原文:Git Loss for Deep Face Recognition Git Loss 1、四个问题 要解决什么问题? 诸如人脸识别、指纹识别等的识别任务,测试集不确定或类别较多而样本较少的情况。 one-shot-learning。 最小化类内差异,最大化类间差异。 用了什么方法解...

2018-11-15 14:58:53

阅读数 278

评论数 1

论文笔记:Distilling the Knowledge

原文:Distilling the Knowledge in a Neural Network Distilling the Knowledge 1、四个问题 要解决什么问题? 神经网络压缩。 我们都知道,要提高模型的性能,我们可以使用ensemble的方法,即训练多个不同的模型,最后...

2018-11-08 14:44:22

阅读数 254

评论数 0

论文笔记:DeepID2

Deep Learning Face Representation by Joint Identification-Verification DeepID2 1、四个问题 要解决什么问题? 人脸识别。 主要挑战是,设计一套方法能够有效地减少类内差异,并增大类间差异。 用了什么方法解决? ...

2018-11-06 20:54:30

阅读数 269

评论数 0

论文笔记:MobileFaceNet

原文:MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices MobileFaceNet 1、四个问题 要解决什么问题? 设计一个在手机或嵌入式设备上可实时运行且具有高精...

2018-11-05 19:33:40

阅读数 1207

评论数 0

论文笔记:ZFNet

ZFNet 1、四个问题 要解决什么问题? 卷积神经网络具有很好的效果,在ImageNet上取得了开创性的成果,但是我们对其却没有一个直观的认识,以及它为何效果这么好,全当成黑盒子来用。 用了什么方法解决? 提出了一个新的卷积神经网络可视化技术,来辅助观察中间层以及最后的分类层的输出特征...

2018-11-04 16:23:17

阅读数 388

评论数 0

论文笔记:ResNet v2

ResNet v2 1、四个问题 要解决什么问题? 进一步提高ResNet的性能。 解释为何Identity mapping(恒等映射)的效果会比较好。 用了什么方法解决? 提出了一个新的残差单元结构。 从理论和实验上分析了identity mapping的有效性。 效果如何? 使...

2018-11-03 19:52:05

阅读数 264

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭