⽬录
1. 什么是递归
2. 递归的限制条件
3. 递归的举例
4. 递归与迭代
1. 什么是递归?
递归是学习C语⾔函数绕不开的⼀个话题,那什么是递归呢?
递归其实是⼀种解决问题的⽅法,在C语⾔中,递归就是函数⾃⼰调⽤⾃⼰。
写⼀个史上最简单的C语⾔递归代码:
上述就是⼀个简单的递归程序,只不过上⾯的递归只是为了演⽰递归的基本形式,不是为了解决问 题,代码最终也会陷⼊死递归,导致栈溢出(Stackoverflow)。
1.1 递归的思想:
把⼀个⼤型复杂问题层层转化为⼀个与原问题相似,但规模较⼩的⼦问题来求解;直到⼦问题不能再 被拆分,递归就结束了。所以递归的思考⽅式就是把⼤事化⼩的过程。
递归中的递就是递推的意思,归就是回归的意思,接下来慢慢来体会。
1.2 递归的限制条件
递归在书写的时候,有2个必要条件:
• 递归存在限制条件,当满⾜这个限制条件的时候,递归便不再继续。
• 每次递归调⽤之后越来越接近这个限制条件。
在下⾯的例⼦中,我们逐步体会这2个限制条件。
2. 递归举例
2.1 举例1:求n的阶乘
⼀个正整数的阶乘(factorial)是所有⼩于及等于该数的正整数的积,并且0的阶乘为1。 ⾃然数n的阶乘写作n!。
题⽬:计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘。
2.1.1 分析和代码实现
我们知道n的阶乘的公式: n ! = n∗(n−1)!
这样的思路就是把⼀个较⼤的问题,转换为⼀个与原问题相似,但规模较⼩的问题来求解的。当 n==0 的时候,n的阶乘是1,其余n的阶乘都是可以通过公式计算。
n的阶乘的递归公式如下:
那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶 乘,函数如下:
测试如下:
运⾏结果(这⾥不考虑n太⼤的情况,n太⼤存在溢出):
2.1.2 画图推演
注:画得比较抽象,实在不能理解的可以参考其他人的
2.2 举例2:顺序打印⼀个整数的每⼀位
输⼊⼀个整数m,按照顺序打印整数的每⼀位。
2.2.1 分析和代码实现
这个题⽬,放在我们⾯前,⾸先想到的是,怎么得到这个数的每⼀位呢?
如果n是⼀位数,n的每⼀位就是n⾃⼰
如果n是超过1位数的话,就得拆分每⼀位
1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4 然后继续对123%10,就得到了3,再除10去掉3,以此类推 不断的 %10 和 /10 操作,直到1234的每⼀位都得到;
但是这⾥有个问题就是得到的数字顺序是倒着的
但是我们有了灵感,我们发现其实⼀个数字的最低位是最容易得到的,通过%10就能得到 那我们假设想写⼀个函数Print来打印n的每⼀位,如下表⽰:
Print(n)
如果 n 是 1234 ,那表⽰为
Print(1234) // 打印 1234 的每⼀位
其中 1234 中的 4 可以通过 %10 得到,那么
Print(1234) 就可以拆分为两步:
1. Print(1234/10) // 打印 123 的每⼀位
2. printf(1234%10) // 打印 4
完成上述 2 步,那就完成了 1234 每⼀位的打印
那么 Print(123) ⼜可以拆分为 Print(123/10) + printf(123%10)
以此类推下去,就有
Print(1234)
==>Print(123)+ printf(4)
==>Print(12) + printf(3)
==>Print(1) + printf(2)
==>printf(1)
直到被打印的数字变成⼀位数的时候,就不需要再拆分,递归结束。
那么代码完成也就⽐较清楚:
输⼊和输出结果:
在这个解题的过程中,我们就是使⽤了⼤事化⼩的思路
把Print(1234) 打印1234每⼀位,拆解为⾸先Print(123)打印123的每⼀位,再打印得到的4 把Print(123) 打印123每⼀位,拆解为⾸先Print(12)打印12的每⼀位,再打印得到的3 直到Print打印的是⼀位数,直接打印就⾏。
2.2.2 画图推演
3. 递归与迭代
递归是⼀种很好的编程技巧,但是和很多技巧⼀样,也是可能被误⽤的,就像举例1⼀样,看到推导的 公式,很容易就被写成递归的形式:
Fact函数是可以产⽣正确的结果,但是在递归函数调⽤的过程中涉及⼀些运⾏时的开销。
在C语⾔中每⼀次函数调⽤,都需要为本次函数调⽤在内存的栈区,申请⼀块内存空间来保存函数调 ⽤期间的各种局部变量的值,这块空间被称为运⾏时堆栈,或者函数栈帧。
函数不返回,函数对应的栈帧空间就⼀直占⽤,所以如果函数调⽤中存在递归调⽤的话,每⼀次递归 函数调⽤都会开辟属于⾃⼰的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。
所以如果采⽤函数递归的⽅式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢 出(stackoverflow)的问题。
注: 关于函数栈帧的详细内容,后期会进行讲解,感兴趣的读者可以前往B站⾃⾏学习。
所以如果不想使⽤递归,就得想其他的办法,通常就是迭代的⽅式(通常就是循环的⽅式)。
⽐如:计算n的阶乘,也是可以产⽣1~n的数字累计乘在⼀起的。
上述代码是能够完成任务,并且效率是⽐递归的⽅式更好的。
事实上,我们看到的许多问题是以递归的形式进⾏解释的,这只是因为它⽐⾮递归的形式更加清晰, 但是这些问题的迭代实现往往⽐递归实现效率更⾼。
当⼀个问题⾮常复杂,难以使⽤迭代的⽅式实现时,此时递归实现的简洁性便可以补偿它所带来的运⾏时开销。
举例3:求第n个斐波那契数
我们也能举出更加极端的例⼦,就像计算第n个斐波那契数,是不适合使⽤递归求解的,但是斐波那契 数的问题通过是使⽤递归的形式描述的,如下:
看到这公式,很容易诱导我们将代码写成递归的形式,如下所⽰:
测试代码:
当我们n输⼊为50的时候,需要很⻓时间才能算出结果,这个计算所花费的时间,是我们很难接受的, 这也说明递归的写法是⾮常低效的,那是为什么呢?
其实递归程序会不断的展开,在展开的过程中,我们很容易就能发现,在递归的过程中会有重复计 算,⽽且递归层次越深,冗余计算就会越多。我们可以作业测试:
输出结果:
这⾥我们看到了,在计算第50个斐波那契数的时候,使⽤递归⽅式,第3个斐波那契数就被重复计算了 512559680次,这些计算是⾮常冗余的,并且计算机出现了崩溃的现象。所以斐波那契数的计算,使⽤递归是⾮常不明智的,我们就得 想迭代的⽅式解决。
我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从⼩到⼤计 算就⾏了。
这样就有下⾯的代码:
迭代的⽅式去实现这个代码,效率就要⾼出很多了。
有时候,递归虽好,但是也会引⼊⼀些问题,所以我们⼀定不要迷恋递归,适可⽽⽌就好。
拓展学习:
• ⻘蛙跳台阶问题
• 汉诺塔问题
这两个是典型的递归问题,可以很好地锻炼刚刚开始接触递归的新人,并且相关思路在B站上面都有视频,感兴趣的话可以去看看。
4.扫雷递归问题
继上一讲的扫雷游戏,因为还没有讲到递归,所以就没有加上快速展开的功能
test.c
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include"game.h"
#include<stdlib.h>
#include<time.h>
void game()
{
char show[ROWS][COLS] = { 0 };//排查出雷的信息
char mine[ROWS][COLS] = { 0 };//布置好雷的信息
//初始化雷的信息
initboard(show, COLS, ROWS, '*');
initboard(mine, COLS, ROWS, '0');
//打印棋盘
//Displayboard(mine, ROW, COL);
//Displayboard(show, ROW, COL);
//布置好雷
setMine(mine, COL, ROW);
char mine1[ROWS][COLS];
copy(mine1, mine, COL, ROW);
//Displayboard(mine, COL, ROW); //这个显示随机地雷埋在哪个位置,调试的时候可以使用
int x, y;
int n = 0;
while (1)
{
printf("\n");
Displayboard(show, COL, ROW);
printf("请输入坐标值:");
scanf("%d %d", &x, &y);
if (x > 0 && x <= COL && y > 0 && y <= COL)
{
n++;
int ret = findMine(mine, x, y);
if (ret == 10)
{
show[x][y] = '#';
printf("^_^ ^_^ ^_^ ^_^ <蹦蹦炸弹> ^_^ ^_^ ^_^ ^_^\n");
break;
}
else
{
n++;
printf("还需要排查%d个位置\n", ROW * COL - COUNT - n);
int c = GetMiintCount(mine, x, y);
show[x][y] = c + '0';
Displayboard(show, ROW, COL);
}
if (n == COL * ROW - COUNT)
{
printf("呜呜呜,我要告诉琴团长,说你欺负可莉!!!\n");
break;
}
if (ret == 0)
{
fun(mine1, show, mine, x, y);
}
else
{
show[x][y] = ret + '0';
continue;
}
}
else
{
printf("输入的坐标有误,请重新输入!\n");
}
}
if (n == ROW * COL - COUNT)
{
printf("呜呜呜,我要告诉琴团长,说你欺负可莉!!!\n");
Displayboard(mine, ROW, COL);
}
//Displayboard(mine, COL, ROW);
}
void manu() //打印菜单
{
printf("***************************\n");
printf("***************************\n");
printf("*******1 . play************\n");
printf("*******2 . exit************\n");
printf("***************************\n");
printf("***************************\n");
}
int main()
{
int n;
srand((unsigned)time(NULL));
do
{
manu();
printf("玩家请选择:");
scanf("%d", &n);
switch (n)
{
case 1:
game();
break;
case 2:
n = 0;
break;
default:
n = 0;
break;
}
} while (n);
}
game.h
#pragma once
#define COUNT 10
#define COL 9
#define ROW 9
#define COLS 11
#define ROWS 11
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
//初始化棋盘
void initboard(char board[ROWS][COLS], int col, int row, char set);
//展示棋盘
void Displayboard(char board[ROWS][COLS], int col, int row);
//设置地雷
void setMine(char board[ROWS][COLS], int col, int row);
//排地雷
int findMine(char board[ROWS][COLS], int col, int row);
//快速排除周围没有一个地雷的点
void fun(char board2[ROWS][COLS], char board1[ROWS][COLS], char board[ROWS][COLS], int x, int y);
void copy(char board[ROWS][COLS], char board1[ROWS][COLS], int col, int row);
game.c
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include"game.h"
void initboard(char board[ROWS][COLS], int col, int row, char set)
{
int i = 0, j = 0;
for (i = 0; i < col; i++)
{
for (j = 0; j < row; j++)
{
board[j][i] = set;
}
}
}
void Displayboard(char board[ROWS][COLS], int col, int row)
{
int i = 0, j = 0;
for (i = 0; i <= col; i++)
{
printf("%d ", i);
}
printf("\n");
for (i = 1; i <= col; i++)
{
printf("%d ", i);
for (j = 1; j <= row; j++)
{
printf("%c ", board[j][i]);
}
printf("\n");
}
}
void setMine(char board[ROWS][COLS], int col, int row)
{
int x, y;
int n = 1;
while (n <= 10)
{
x = rand() % (col - 1) + 1;
y = rand() % (row - 1) + 1;
if (board[x][y] == '0')
{
board[x][y] = '1';
n++;
}
}
}
int findMine(char board[ROWS][COLS], int x, int y)
{
while (1)
{
if (board[x][y] == '1')
{
return 10;
}
else
{
return board[x - 1][y - 1] +
board[x][y - 1] +
board[x + 1][y - 1] +
board[x - 1][y] +
board[x + 1][y] +
board[x - 1][y + 1] +
board[x][y + 1] +
board[x + 1][y + 1] - 8 * board[x][y];
}
}
}
int GetMiintCount(char mine[ROWS][COLS], int x, int y)
{
return mine[x - 1][y - 1] + mine[x - 1][y] + mine[x - 1][y + 1] + mine[x][y - 1] + mine[x][y + 1] + mine[x + 1][y - 1]
+ mine[x + 1][y] + mine[x + 1][y + 1] - 8 * '0';
}
void fun(char board2[ROWS][COLS], char board1[ROWS][COLS], char board[ROWS][COLS], int x, int y) //fun(botboard, showboard, botboard, x, y);
{
int ret = findMine(board, x, y);
if (ret == 0 && x > 0 && y > 0 && board2[x][y] != ' ')
{
board2[x][y] = ' ';
fun(board2, board1, board, x - 1, y);
fun(board2, board1, board, x + 1, y);
fun(board2, board1, board, x, y + 1);
fun(board2, board1, board, x, y - 1);
}
board1[x][y] = ret + '0';
}
void copy(char board[ROWS][COLS], char board1[ROWS][COLS], int col, int row)
{
int i = 0, j = 0;
for (i = 0; i < row; i++)
{
for (j = 0; j < col; j++)
{
board[i][j] = board1[i][j];
}
}
}