CNN vs Fully connected NN

CNN vs Fully connected NN

CNN has the advantageous properties including sparse interactions with local connectivity, parameter sharing with reduced numbers, and equivariant representation which is invariant to object locations;


Principle

Abstracted features are learned by stacked convolutional and sampling layers.


Pros.

Reduced parameter number,invariance of shift,scale and distortion


Cons.

High computational complexity for high hierarchical model training.



阅读更多
个人分类: 深度学习
上一篇tf.logging.set_verbosity(tf.logging.INFO)
下一篇VOC dataset
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭