precision,recall,average precision,mAP

good -> https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173



False Positives和False Negative等含义


转载: https://blog.csdn.net/xbinworld/article/details/50631342

True Positive (真正, TP)被模型预测为正的正样本;

True Negative(真负 , TN)被模型预测为负的负样本 ;

False Positive (假正, FP)被模型预测为正的负样本;

False Negative(假负 , FN)被模型预测为负的正样本;

True Positive Rate(真正率 , TPR)或灵敏度(sensitivity) 
   TPR = TP /(TP + FN) 
   正样本预测结果数 / 正样本实际数

True Negative Rate(真负率 , TNR)或特指度(specificity) 
   TNR = TN /(TN + FP) 
   负样本预测结果数 / 负样本实际数 

False Positive Rate (假正率, FPR) 
   FPR = FP /(FP + TN) 
   被预测为正的负样本结果数 /负样本实际数 

False Negative Rate(假负率 , FNR) 
   FNR = FN /(TP + FN) 
   被预测为负的正样本结果数 / 正样本实际数

召回率和精度:

- 系统检索到的相关文档(A)

       - 系统检索到的不相关文档(B)

       - 相关但是系统没有检索到的文档(C)

       - 不相关但是被系统检索到的文档(D)

 

直观的说,一个好的检索系统检索到的相关文档越多越好,不相关文档越少越好.

召回率和精度是衡量信息检索系统性能最重要的参数.

召回率R:用检索到相关文档数作为分子,所有相关文档总数作为分母,即 R=A/(A+C)

精度P 用检索到相关文档数作为分子,所有检索到的文档总数作为分母.即  P=A/(A+B).


FYI: https://sanchom.wordpress.com/tag/average-precision/

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页