实战OpenCV之机器学习

26 篇文章 3 订阅 ¥59.90 ¥99.00

基础入门

        机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下学习并改进其操作方式。这通常涉及使用算法来解析数据、从中学习并做出决定或预测。机器学习主要分为以下四种类型。

        监督学习:算法会接收带有正确答案的输入数据(称为训练集),并尝试学习映射函数,使得对于新的输入数据也能给出正确的输出。常见的监督学习任务有:分类和回归。

        无监督学习:算法处理的是没有标签的数据,即只有输入数据而没有相应的输出标签。算法的目标是:推断数据的结构或分布。常见的无监督学习任务有:聚类和降维。

        半监督学习:介于监督学习和无监督学习之间的一种学习方式,使用部分标记的数据和大量未标记的数据来进行训练。

        强化学习:这种学习方式涉及一个智能体,它通过与环境互动来学习策略,即学习如何采取行动以最大化某个累积奖励值。

        典型的机器学习项目包括以下几个步骤。

        1、数据收集:获取相关的数据集。

        2、数据预处理:

评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

希望_睿智

您的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值