二进制中 :
1. 位宽不变的情况下,膜 加1等于0. 膜表示所有的位数都是1, 例如位宽是2, 膜就是11.
模加1就是 11b + 01b = 100b ,但是位宽不变, 只取低二位, 所以就是0
2. 膜 = A + A的反码 ( 以下用 ~A 表示) , 例如 11 = 01 +10 , 但是这里 A 不能等于膜, 否则就是 A=A 没法继续计算求值. A是大于0的正数,
所以
模 = A + ~A
=> 模 +1 =A + ~A +1
=> 0 = A + ~A +1
=> -A = ~A +1 (称作-A的补码)
所以八位数的 -3 可以用 ~00000011+1=11111101表示,11111101就是-3的补码
减 3就等于加上 -3 (注意是-3不是3) 的补码, 计算的时要有符号位, 算出来的数也是一个补码, 要恢复成原码看
例如用8位, 包含1位符号位为例:
(1) 5 - 3 =2 (可以看做是5加上 -3的补码)
00000101 + 11111101= 00000010 (正数补码等于原码)
(2) 3 -5 = -2 (-5 可以用-5的补码表示, 就是11111011)
00000011 + 11111011 = 11111110(补码) = 10000010 (原码 = -2 )
如果把公式改写成 - (5-3) 就免去了最后把补码转成原码的过程,只要将结果的符号位取反就行, 因为计算结果是正数, 补码等于原码
-(00000101 + 11111101 ) = - ( 00000010 ) = 10000010 (原码 = -2 )
(3) 如果是负数相加, 就转化为正数,例如 -3 -5 = - (3+5)
本文详细介绍了二进制加法中模的概念,以及如何利用补码表示负数。通过实例展示了如何进行二进制减法,并解释了在计算过程中如何使用补码简化操作,特别是对于负数相加的转换。此外,还讨论了如何通过补码直接计算负数相减的结果,避免了额外的原码转换步骤。
1万+

被折叠的 条评论
为什么被折叠?



