最小二乘法公式推导

最小二乘法是一种常用的数学优化技术,在回归分析中特别常见,用于估计模型参数以使误差平方和达到最小。对于线性模型,它假设输入变量和输出变量之间存在线性关系,通常表示为 \( y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \epsilon \),其中 \( y \) 是因变量,\( \beta_0, \beta_1, \beta_2, ... \) 是待估参数,\( x_1, x_2, ... \) 是自变量,而 \( \epsilon \) 是随机误差项。 假设我们有一组数据点 \( (x_i, y_i) \),i=1到n。最小二乘法的目标是最小化误差 \( e_i = y_i - f(x_i) \) 的平方和,即 \[ \min_{\beta_0, \beta_1} \sum_{i=1}^{n}(y_i - (\beta_0 + \beta_1 x_i))^2 \] 对每个参数分别求偏导并设其等于零可以找到最优解。令偏导数为零得: \[ \frac{\partial}{\partial \beta_0}\left(\sum e_i^2\right) = -2\sum e_i = 0 \\ \frac{\partial}{\partial \beta_1}\left(\sum e_i^2\right) = -2\sum x_ie_i = 0 \] 整理这两个方程,我们得到: \[ \sum y_i = n\beta_0 + \beta_1\sum x_i \quad \text{(中心化)} \\ \sum x_iy_i = \beta_0\sum x_i + \beta_1\sum x_i^2 \] 从第一个方程,我们可以解出 \( \beta_0 \): \[ \beta_0 = \frac{1}{n}\left(\sum y_i - \beta_1\sum x_i\right) \] 将 \( \beta_0 \) 的表达式代入第二个方程,得到 \( \beta_1 \): \[ \beta_1 = \frac{n\sum x_iy_i - \sum x_i\sum y_i}{n\sum x_i^2 - (\sum x_i)^2} \] 这就是最小二乘法估计线性回归参数的简单推导公式。一旦得到 \( \beta_0 \) 和 \( \beta_1 \),我们就可以预测新的 \( y \) 值了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值