矩阵连乘问题

做好充足的准备,你才能在机会到来时狠狠的抓住它!Come on!

#include <cstdio>
#include <cstring>
const int INF=100;
int m[INF][INF],s[INF][INF],p[INF];
// m[i][j]表示从第i个矩阵到第j个矩阵连乘需要进行乘法计算的次数
// s[i][j]=k  表示:m[i][j]最小时,应先计算第ige矩阵到第k个矩阵的乘积,
//再计算第k+1个矩阵到第j个矩阵的乘积,然后在计算所得两个矩阵的乘积
//p[i-1]记录的是第i个矩阵的行数,p[i]记录的是第i个矩阵的列数
void MatrixChain(int n)
{
    for(int i=0;i<=n;i++)
        m[i][i]=s[i][i]=0;
    for(int k=2;k<=n;k++)  //k表示连乘的矩阵的个数
    {
        for(int i=1;i<=n-k+1;i++)
        {
            int j=i+k-1;
            m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];
            s[i][j]=i;
            for(int t=i+1;t<j;t++)
            {
                int temp=m[i][t]+m[t+1][j]+p[i-1]*p[t]*p[j];
                if(temp<m[i][j])
                {
                    m[i][j]=temp;
                    s[i][j]=t;
                }
            }
        }
    }
}

void Traceback(int i,int j)
{
    if(i==j) return;
    Traceback(i,s[i][j]);
    Traceback(s[i][j]+1,j);
    printf("A[%d:%d]*A[%d:%d]\n",i,s[i][j],s[i][j]+1,j);
}

int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=0;i<=n;i++)
            scanf("%d",&p[i]);
        MatrixChain(n);
        Traceback(1,n);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值