poj--题目分类

poj--题目分类

1、 排序

1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1840, 2201, 2376, 2377, 2380, 13
18, 1877, 1928, 1971, 1974, 1990, 2001, 2002, 2092, 2379,

1002(需要字符处理,排序用快排即可) 1007(稳定的排序) 2159(题意较难懂) 2231
2371(简单排序) 2388(顺序统计算法) 2418(二*排序树)

2、 搜索、回溯、遍历

1022 1111 1118 1129 1190 1562 1564 1573 1655 2184 2225 2243 2312 2362 2378 2386
1010,1011,1018,1020,1054,1062,1256,1321,1363,1501,1650,1659,1664,1753,2078,208
3,2303,2310,2329

简单:1128, 1166, 1176, 1231, 1256, 1270, 1321, 1543, 1606, 1664, 1731, 1742, 17
45, 1847, 1915, 1950, 2038, 2157, 2182, 2183, 2381, 2386, 2426,
不易:1024, 1054, 1117, 1167, 1708, 1746, 1775, 1878, 1903, 1966, 2046, 2197, 23
49,
推荐:1011, 1190, 1191, 1416, 1579, 1632, 1639, 1659, 1680, 1683, 1691, 1709, 17
14, 1753, 1771, 1826, 1855, 1856, 1890, 1924, 1935, 1948, 1979, 1980, 2170, 2288
, 2331, 2339, 2340,1979(和迷宫类似) 1980(对剪枝要求较高)

3、 历法

1008 2080 (这种题要小心)

4、 枚举

1012,1046, 1387, 1411, 2245, 2326, 2363, 2381,1054(剪枝要求较高),1650
(小数的精度问题)

5、 数据结构的典型算法

容易:1182, 1656, 2021, 2023, 2051, 2153, 2227, 2236, 2247, 2352, 2395,
不易:1145, 1177, 1195, 1227, 1661, 1834,
推荐:1330, 1338, 1451, 1470, 1634, 1689, 1693, 1703, 1724, 1988, 2004, 2010, 21
19, 2274, 1125(弗洛伊德算法) ,2421(图的最小生成树)

6、 动态规划

1037 A decorative fence、
1050 To the Max、
1088 滑雪、
1125 Stockbroker Grapevine、
1141 Brackets Sequence、
1159 Palindrome、
1160 Post Office、
1163 The Triangle、
1458 Common Subsequence、
1579 Function Run Fun、
1887 Testing the CATCHER、
1953 World Cup Noise、
2386 Lake Counting

7、 贪心

1042, 1065, 1230, 1784,1328 1755(或用单纯形方法),2054,101
7, 1328,1862, 1922 ,2054, 2209, 2313, 2325, 2370。

8、 模拟

容易:1006, 1008, 1013, 1016, 1017, 1169, 1298, 1326, 1350, 1363, 1676, 1786, 17
91, 1835, 1970, 2317, 2325, 2390,
不易:1012, 1082, 1099, 1114, 1642, 1677, 1684, 1886,1281 1928 2083 2141 2015

9、 递归

1664

10、字符串处理

1488, 1598, 1686, 1706, 1747, 1748, 1750, 1760, 1782, 1790, 1866, 1888, 1896, 19
51, 2003, 2121, 2141, 2145, 2159, 2337, 2359, 2372, 2406, 2408, 1016 1051 1126 1
318 1572 1917 1936 2039 2083 2136 2271 2317 2330,2121 2403

11、数论

1006,1014,1023,1061,1152,1183,1730,2262

12、几何有关的题目

凸包:1113, 1228, 1794, 2007, 2187,1113 wall,2187 beauty contest
容易:1319, 1654, 1673, 1675, 1836, 2074, 2137, 2318,
不易:1685, 1687, 1696, 1873, 1901, 2172, 2333,

13、任意精度运算、数字游戏、高精度计算

1001 1023 1047 1060 1079 1131 1140 1142 1207 1220 1284 1289 1306 1316 1338 1405
1454 1503 1504 1519 1565 1650 1969 2000 2006 2081 2247 2262 2305 2316 2389
1001, 1220, 1405, 1503,1001(高精度乘法) 2413(高精度加法,还有二分查找)

14、概率统计

1037,1050

15、小费用最大流、最大流

2195 going home,2400 supervisor, supervisee,1087 a plug for UNIX,1149 PIGS,1
273 drainage ditches,1274 the perfect stall,1325 machine schedule,1459 power
network,2239 selecting courses

16、压缩存储的DP

1038 bugs integrated inc,1185 炮兵阵地,2430 lazy cow

17、最长公共子串(LCS)

1080 human gene functions,1159 palindrome,1458 common subsequence,2192 zipper

18、图论及组合数学

2421 Constructing Roads、
2369 Permutations、
2234 Matches Game、
2243 Knight Moves、
2249 Binomial Showdown、
2255 Tree Recovery、
2084 Game of Connections、
1906 Three powers、
1833 排列、
1850 Code、
1562 Oil Deposits、
1496 Word Index、
1306 Combinations、
1125 Stockbroker Grapevine、
1129 Channel Allocation、
1146 ID Codes、
1095 Trees Made to Order、找规律
2247 Humble Numbers、
2309 BST、
2346 Lucky tickets、
2370 Democracy in danger、
2365 Rope、
2101 Honey and Milk Land
2028 When Can We Meet?、
2084 Game of Connections、
1915 Knight Moves、
1922 Ride to School、
1941 The Sierpinski Fractal、
1953 World Cup Noise、
1958 Strange Towers of Hanoi、
1969 Count on Canton、
1806 Manhattan 2025、
1809 Regetni、
1844 Sum、
1870 Bee Breeding、
1702 Eva's Balance、
1728 A flea on a chessboard、
1604 Just the Facts、
1642 Stacking Cubes、
1656 Counting Black、
1657 Distance on Chessboard、
1662 CoIns、
1663 Number Steps、
1313 Booklet Printing、
1316 Self Numbers、
1320 Street Numbers、
1323 Game Prediction、
1338 Ugly Numbers、
1244 Slots of Fun、
1250 Tanning Salon、
1102 LC-Display、
1147 Binary codes、
1013 Counterfeit Dollar、

19、博弈类

1067 取石子游戏、
1740 A New Stone Game、
2234 Matches Game、
1082 Calendar Game 、
2348 Euclid's Game、
2413 How many Fibs?、
2419 Forest

20、简单、模拟题
1001 Exponentiation 、
1002 487-3279、
1003 Hangover 、
1701 Dissatisfying Lift、
2301 Beat the Spread!、
2304 Combination Lock、
2328 Guessing Game、
2403 Hay Points 、
2406 Power Strings、
2339 Rock, Scissors, Paper、
2350 Above Average、
2218 Does This Make Me Look Fat?、
2260 Error Correction、
2262 Goldbach's Conjecture、
2272 Bullseye、
2136 Vertical Histogram、
2174 Decoding Task、
2183 Bovine Math Geniuses、
2000 Gold Coins、
2014 Flow Layout、
2051 Argus、
2081 Calendar、
1918 Ranking List、
1922 Ride to School、
1970 The Game、
1972 Dice Stacking、
1974 The Happy Worm、
1978 Hanafuda Shuffle、
1979 Red and Black、
1617 Crypto Columns、
1666 Candy Sharing Game、
1674 Sorting by Swapping、
1503 Integer Inquiry、
1504 Adding Reversed Numbers、
1528 Perfection、
1546 Basically Speaking、
1547 Clay Bully、
1573 Robot Motion、
1575 Easier Done Than Said?、
1581 A Contesting Decision、
1590 Palindromes、
1454 Factorial Frequencies、
1363 Rails、
1218 THE DRUNK JAILER、
1281 MANAGER、
1132 Border、
1028 Web Navigation、

21、初等数学

1003 Hangover、
1045 Bode Plot、
1254 Hansel and Grethel、
1269 Intersecting Lines、
1401 Factorial、
1410 Intersection、
2363 Blocks 、
2365 Rope、
2242 The Circumference of the Circle、
2291 Rotten Ropes、
2295 A DP Problem、
2126 Factoring a Polynomial、
2191 Mersenne Composite Numbers、
2196 Specialized Four-Digit Numbers、
1914 Cramer's Rule、
1835 宇航员、
1799 Yeehaa!、
1607 Deck、
1244 Slots of Fun、
1269 Intersecting Lines、
1299 Polar Explorer、
1183 反正切函数的应用、

22、匹配

1274, 1422, 1469, 1719, 2060, 2239

===================================

经典
1011(搜索好题)
1012(学会打表)
1013
1019(它体现了很多此类问题的特点)
1050(绝对经典的dp)
1088(dp好题)
1157(花店,经典的dp)
1163(怎么经典的dp那么多呀???)
1328(贪心)
1458(最长公共子序列)
1647(很好的真题,考临场分析准确和下手迅速)
1654(学会多边形面积的三角形求法)
1655(一类无根树的dp问题)
1804(逆序对)
2084(经典组合数学问题)
2187(用凸包求最远点对,求出凸包后应该有O(N)的求法,可我就是调不出来)
2195(二分图的最佳匹配)
2242(计算几何经典)
2295(等式处理)
2353(dp,但要记录最佳路径)
2354(立体解析几何)
2362(搜索好题)
2410(读懂题是关键)
2411(经典dp)



趣味
1067(很难的数学,但仔细研究,是一片广阔的领域)
1147(有O(n)的算法,需要思考)
1240(直到一棵树的先序和后序遍历,那么有几种中序遍历呢?dp)
1426(是数论吗?错,是图论!)
1648(别用计算几何,用整点这个特点绕过精度的障碍吧)
1833(找规律)
1844(貌似dp或是搜索,其实是道有趣的数学题)
1922(贪心,哈哈)
2231
2305(不需要高精度噢)
2328(要仔细噢)
2356(数论知识)
2359(约瑟夫问题变种)
2392(有趣的问题)



很繁的题
1001
1008
1087(构图很烦,还有二分图的最大匹配)
1128(USACO)
1245
1329
1550(考的是读题和理解能力)
1649(dp)
2200(字符串处理+枚举)
2358(枚举和避免重复都很烦)
2361(仔细仔细再仔细)



难题

1014(数学证明比较难,但有那种想法更重要)
1037(比较难的dp)
1405(高精度算法也分有等级之分,不断改进吧)
2002(不知道有没有比O(n^2*logn)更有的算法?)
2054(极难,很强的思考能力)
2085(组合数学)
2414(dp,但要剪枝)
2415(搜索)
2423(计算几何+统计)



多解题
1002(可以用排序,也可以用统计的方法)
1338(搜索和dp都可以)
1664(搜索和dp都练一练吧)
2082(这可是我讲的题噢)
2352(桶排和二*树都行)



Note:
1011: 很经典的剪支
1014: 难在数学上
1017: 严格的数学证明貌似不容易
1021: 有点繁,考察对图形进行各种旋转的处理
1083: 巧妙的思考角度
1150: 分奇偶讨论,lg(n)算法
1218: 三行就够了,虽然简单,但也有优劣之别
1505: 二分加贪心
1654: 做法也许很多吧,本人用有向面积做的
1674: 计算圈的个数(算是graph 吧)
1700: 数学证明不容易
1742: O(m*n)的算法
1863: 要耐心地慢慢写…^_^
1988: 并查集
2051: 堆
2078: 不难,但剪支可以做到很好
2082::O(n),你想到了吗?
2084: 卡特兰数
2182: 线段树
2195: 最小费用最大流
2234: 经典博弈算法
2236: 并查集
2299: 二分思想
2395: Kruskal 最小生成树的拓展
2406: KMP
2411: 用二进制串来表示状态
解题报告:Fence 题目来源:POJ 1031 解法或类型: 计算几何 作者:杨清玄 Fence Time Limit:1S Memory Limit:1000K Total Submit:103 Accepted:26 Description There is an area bounded by a fence on some flat field. The fence has the height h and in the plane projection it has a form of a closed polygonal line (without self-intersections), which is specified by Cartesian coordinates (Xi, Yi) of its N vertices. At the point with coordinates (0, 0) a lamp stands on the field. The lamp may be located either outside or inside the fence, but not on its side as it is shown in the following sample pictures (parts shown in a thin line are not illuminated by the lamp): The fence is perfectly black, i.e. it is neither reflecting, nor diffusing, nor letting the light through. Research and experiments showed that the following law expresses the intensity of light falling on an arbitrary illuminated point of this fence: I0=k/r where k is a known constant value not depending on the point in question, r is the distance between this point and the lamp in the plane projection. The illumination of an infinitesimal narrow vertical board with the width dl and the height h is dI=I0*|cosα|*dl*h where I0 is the intensity of light on that board of the fence, α is the angle in the plane projection between the normal to the side of the fence at this point and the direction to the lamp. You are to write a program that will find the total illumination of the fence that is defined as the sum of illuminations of all its illuminated boards. Input The first line of the input file contains the numbers k, h and N, separated by spaces. k and h are real constants. N (3 <= N <= 100) is the number of vertices of the fence. Then N lines follow, every line contains two real numbers Xi and Yi, separated by a space. Output Write to the output file the total illumination of the fence rounded to the second digit after the decimal point. Sample Input 0.5 1.7 3 1.0 3.0 2.0 -1.0 -4.0 -1.0 Sample Output 5.34 Source Northeastern Eu
解题报告:Fence 题目来源:POJ 1031 解法或类型: 计算几何 作者:杨清玄 Fence Time Limit:1S Memory Limit:1000K Total Submit:103 Accepted:26 Description There is an area bounded by a fence on some flat field. The fence has the height h and in the plane projection it has a form of a closed polygonal line (without self-intersections), which is specified by Cartesian coordinates (Xi, Yi) of its N vertices. At the point with coordinates (0, 0) a lamp stands on the field. The lamp may be located either outside or inside the fence, but not on its side as it is shown in the following sample pictures (parts shown in a thin line are not illuminated by the lamp): The fence is perfectly black, i.e. it is neither reflecting, nor diffusing, nor letting the light through. Research and experiments showed that the following law expresses the intensity of light falling on an arbitrary illuminated point of this fence: I0=k/r where k is a known constant value not depending on the point in question, r is the distance between this point and the lamp in the plane projection. The illumination of an infinitesimal narrow vertical board with the width dl and the height h is dI=I0*|cosα|*dl*h where I0 is the intensity of light on that board of the fence, α is the angle in the plane projection between the normal to the side of the fence at this point and the direction to the lamp. You are to write a program that will find the total illumination of the fence that is defined as the sum of illuminations of all its illuminated boards. Input The first line of the input file contains the numbers k, h and N, separated by spaces. k and h are real constants. N (3 <= N <= 100) is the number of vertices of the fence. Then N lines follow, every line contains two real numbers Xi and Yi, separated by a space. Output Write to the output file the total illumination of the fence rounded to the second digit after the decimal point. Sample Input 0.5 1.7 3 1.0 3.0 2.0 -1.0 -4.0 -1.0 Sample Output 5.34 Source Northeastern Europe 1998 解题思路: 本题是一道计算几何的题目。首先,由于题目可以得到dI=I0*|cosα|*dl*h 也就是说一条边的总照度为 = = =a*h*k 其中下,X1,X2为一条边的坐右端点,a为这条边对原点所张的角度 所以实际上本题是要求整个FENCE区域对原点所张开的总角度, 定义FENCE为一有向回路 那么每条边都是有向的。。如果按照边的方向对原点所张开的角度为顺时针。那么定义为正。逆时针为负。并且每输入一条边就把本边对原点张开的角度计算进去加到一个数里去 那么对于包含原点的区域。这个数应该为正负2 ; 对于不包含原点的区域,这个数在按边过程中的最大值-最小值就是这个区域对原点所张开的角度。 还有一种情况,那就是区域不包含原点,但是总共张开的角度大于2 ,那么只要计算为2 即可因为原点对任何区域最多只能张开2 。 数据结构: 用一个POINT数组来储存点的位置 时空分析: 如果有N个点 那么空间复杂度为O(N) 时间复杂度为O(N) 源程序: fence.cpp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值