最近看机器学习的教学视频,老师反复提到了一个函数GridSearchCV()。举个例子,在python中用一个模型的时候,可能会涉及一些需要人为指定的参数,比如随机森林模型需要指定min_samples_split=?、n_estimators=?,在我们缺乏先验知识的时候,我们是不知道取什么样的值才是合适的,这个时候GridSearchCV()函数就派上了用场。
#简单的例子来看看GridSearchCV函数的用处
from sklearn.grid_search import GridSearchCV
tree_param_grid = { 'min_samples_split': list((3,6,9)),'n_estimators':

本文介绍了在机器学习中,当面临模型参数选取困难时,如何利用sklearn库中的GridSearchCV()函数进行参数调优。通过设置不同参数的候选值列表,进行交叉验证以找到最优参数组合,例如在随机森林模型中调整min_samples_split和n_estimators。GridSearchCV通过比较交叉验证得分来决定最佳参数,例如在示例中选择了'min_samples_split': 3, 'n_estimators': 100,因为其得分最高。官方文档提供了更详细的信息和更多使用案例。"
79091624,7413211,模拟按键实现电话自动接听挂断,"['移动开发', 'Android开发', '自动化']
最低0.47元/天 解锁文章
5817

被折叠的 条评论
为什么被折叠?



