sklearn中的GridSearchCV()!python中模型里各种参数取值有它方便多了

本文介绍了在机器学习中,当面临模型参数选取困难时,如何利用sklearn库中的GridSearchCV()函数进行参数调优。通过设置不同参数的候选值列表,进行交叉验证以找到最优参数组合,例如在随机森林模型中调整min_samples_split和n_estimators。GridSearchCV通过比较交叉验证得分来决定最佳参数,例如在示例中选择了'min_samples_split': 3, 'n_estimators': 100,因为其得分最高。官方文档提供了更详细的信息和更多使用案例。" 79091624,7413211,模拟按键实现电话自动接听挂断,"['移动开发', 'Android开发', '自动化']
摘要由CSDN通过智能技术生成

最近看机器学习的教学视频,老师反复提到了一个函数GridSearchCV()。举个例子,在python中用一个模型的时候,可能会涉及一些需要人为指定的参数,比如随机森林模型需要指定min_samples_split=?、n_estimators=?,在我们缺乏先验知识的时候,我们是不知道取什么样的值才是合适的,这个时候GridSearchCV()函数就派上了用场。


#简单的例子来看看GridSearchCV函数的用处
from sklearn.grid_search import GridSearchCV
tree_param_grid = { 'min_samples_split': list((3,6,9)),'n_estimators':
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值