一道笔试题——由数组中除了一个数之外的其他数的乘积生成另一个数组

        一、题目

        对于一个数组A[N],要求生成一个新的数组B[N]。对数组B的要求是B[i] = A[0] * A[1]…*A[i - 1] * A[i + 1]*…*A[N],也就是不包括A[i]的剩余元素之积。

        二、要求

        1. 不允许使用除法;

        2. O(1)空间复杂度和O(n)时间复杂度;

        3. 除遍历计数器与a[N] b[N]外,不可使用新的变量(包括栈临时变量、对空间和全局静态变量等)

        三、思路

        B[i]由两部分组成,第一部分为B1 = A[i + 1] * A[i + 2] * ... * A[N],第二部分为B2 = A[0] * A[1] * ... * A[i - 1],结果由这两部分乘积组成,即B[i] = B1 * B2。

        所以可以这么实现,先遍历一遍数组A,算出除了B[n - 1]外B[i]中的第一部分,存于B[i];接着再遍历一遍数组A,用B[n - 1]作为临时变量,算出B[i]第二部分,将两部分相乘得到B[i]结果;最后再算B[n - 1]。具体实现如下。

       四、程序实现

#include <iostream>
using namespace std;
int main()
{
	const int n = 8;
	int a[n] = {1, 2, 3, 4, 5, 6, 7, 8};
	int b[n];
	b[n - 1] = 1;	// b[n-1]作为临时变量
	
	for (int i = n - 2; i >= 0; --i)
		b[i] = b[i + 1] * a[i + 1];	// 算出除了b[n-1]之外b[i]的第一部分B1 = A[i + 1] * A[i + 2] * ... * A[N]
	
	for(int i = 1; i != n - 1; ++i)
	{
		b[n - 1] *= a[i - 1];	// b[n - 1] = a[0] * a[1] * ... * a[n - 3],每次迭代b[n - 1]相当于b[i]的第二部分B2 = A[0] * A[1] * ... * A[i - 1]
		b[i] *= b[n-1];	// B[i] =  B1 * B2
	}
	b[n - 1] *= a[n - 2];

	for (int i = 0; i != n; ++i)
		cout << b[i] << endl;
} 

       五、运行结果

40320
20160
13440
10080
8064
6720
5760
5040

        参考:http://zhidao.baidu.com/question/406940792.html

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页