每天五分钟深度学习框架PyTorch:梯度裁剪解决RNN梯度爆炸的问题

本文重点

在循环神经网络训练的过程中,有时候很容易出现梯度爆炸的情况,如果出现这种问题,我们应该怎么办?本文先来分析一下为什么会出现这种情况,然后我们在给出解决方案

梯度爆炸的原因

我们从RNN训练的反向传播算法入手,当我们使用BPTT算法训练RNN的时候,它的公式为:

WR就是Whh,因为Whh是累乘的,所以Whh>1有可能出现梯度爆炸,Whh<1有可能出现梯度消失,对于RNN来说更有可能出现梯度爆炸的情况

解决

如果在训练过程中,loss从小突然变大,那么此时可能发生了梯度爆炸的情况,解决办法就是在计算梯度的时候,需要计算一下当前梯度的值,如果大于阈值,那么令梯度w.grad除以梯度的模*10,也就是固定该参数的梯度值为10,这样就可以解决这个问题

代码实现:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值