每天五分钟深度学习PyTorch:0填充函数在搭建神经网络中的应用

本文重点

在深度学习中,神经网络的搭建涉及对输入数据、权重矩阵以及中间计算结果的处理。masked_fill 是 PyTorch 等深度学习框架中常用的张量操作函数,它通过布尔掩码(mask)对张量中的指定元素进行填充。当将矩阵元素填充为 0 时,masked_fill 在神经网络中发挥着重要作用,主要体现在屏蔽无效信息、实现注意力机制、处理序列数据、优化计算效率以及增强模型鲁棒性等方面。

masked_fill

masked_fill是神经网络搭建过程中常用的函数,我们常常需要对矩阵的某些元素填充为0或者其它的数字,我们使用这个函数可以很快的完成操作。

代码

a=torch.randn(3,3)
b=torch.eye(3)
b_new=b>0.5
print(b_new)
c=a.masked_fill_(b_new,0)
print(a)
print(b)
print(c)

代码解析:b表示建立一个对角线为1的对角矩阵,但是此时的对角线元素的类型为float不过是int,那么我们通过b>0.5的方式就可以将其转成int类型。

a.masked_fill(b_new,0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值