卷积神经网络通道剪枝裁剪

论文来自旷视科技2017年的论文Channel Pruning for Accelerating Very Deep Neural Network

论文地址:https://arxiv.org/abs/1707.06168

代码地址:https://github.com/yihui-he/channel-pruning(还没跑过)

 

卷积通道剪枝

论文的主要思想是,通过最小化裁剪后特征图和裁剪前特征图之间的误差,尽可能的减少卷积核的通道数。

                                                                                               图1

图1中B、W和C分别为输入特征图、卷积核和输出特征图。c和n为输入特征图的通道数和输出特征图的通道数。

在卷积计算中,我们使用im2col来表示输入特征图、卷积核以及输出特征图,分别为:

(H*W)*(C_{in}*k_{h}*k_{w})的输入特征图,(C_{in}*k_{h}*k_{w})*(C_{out})的卷积核,(H*W)*(C_{out})的输出特征图。

其中H和W分别为输出特征图的高和宽。

由矩阵乘法可知,卷积核中对应的行只和输入特征图矩阵中特定的列相乘,如图1所示,当我们裁剪了卷积核中的通道数后,相对应的输入特征图中的通道数亦可裁去,而输出当前输入特征图的对应上层的卷积核亦可裁去。

如何选取裁剪的通道,是本文的重点。

公式1中的Y为原始输出特征图,而后半部为裁剪后的输出特征图。我们将两者之间的距离作为误差,目的就是在尽可能剪枝的情况下,保持剪枝后特征图和原始特征图的差距最小。式中beta为0时,对应的输入层失效,达到剪枝的效果。公式中的限制项为beta的0范数,c'为一个超参数,表示我们希望剪枝的最小剪枝数。由于优化一个带0范数的损失函数是一个NP难问题,作者引入lasso来代替原始损失函数,尽可能的使beta向量稀疏。

优化过程可以分为两步:

1.  固定W参数,迭代的方法,使beta向量尽可能稀疏,达到预先设定的剪枝数。

2. 固定迭代好的beta,输入X变为X',X'即为beta迭代后与原始输入X的乘积。

 

多通道网络卷积通道剪枝

对于多通道网络,例如ResNet中的残差块,作者提出了一种解决方法。

block的输入

上图左中可知,残差块的输入和shortcut是相同的,若对残差块中第一个卷积操作进行剪枝,会影响到shortcut,因此作者提出了在残差块输入后添加一层sampler,进行通道采样,避免残差块中第一层卷积的剪枝对shortcut的影响。

block的输出

对于输出,原始残差块中,shortcut和残差块输出是相同通道数的,若对最后一层1x1卷积剪枝,会影响到残差块输出Y2和shortcut的Y1的组合。因此作者提出,最后一层卷积层拟合的特征图,从原始的输出特征图Y2,变为Y1-Y1'+Y2,Y1为未裁剪的残差块输入特征图,Y1'为残差块之前卷积裁剪后的特征图,Y2为残差块未裁剪的输出特征图。

 

这篇论文提出的通道裁剪在对指标影响较小的情况下,极大的提升了网络的性能。

在VGG中,达到4倍的速度情况下,仅仅增加了1%的top-5误差。

ResNet达到2倍速度的情况下,增加了1.4%的误差。

Faster-RCNN在达到2倍速度的情况下,仅降低了0.4mAP。

  • 5
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值