先简要介绍
1. 简单序时平均数法 也称算术平均法。即把若干历史时期的统计数值作为观察值,求出算术平均数作为下期预测值。这种方法基于下列假设:“过去这样,今后也将这样”,把近期和远期数据等同化和平均化,因此只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。这种方法直接采用平均数
2. 加权序时平均数法 就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。
3. 简单移动平均法 就是相继移动计算若干时期的算术平均数作为下期预测值。
4. 加权移动平均法 即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。
上述几种方法虽然简便,能迅速求出预测值,但由于没有考虑整个社会经济发展的新动向和其他因素的影响,所以准确性较差。应根据新的情况,对预测结果作必要的修正。
6. 指数平滑法 即根据历史资料的上期实际数和预测值,用指数加权的办法进行预测。此法实质是由加权移动平均法演变而来的一种方法,优点是只要有上期实际数和上期预测值,就可计算下期的预测值,这样可以节省很多数据和处理数据的时间,减少数据的存储量,方法简便。是国外广泛使用的一种短期预测方法。
7. 季节趋势预测法 根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。推算季节性指数可采用不同的方法,常用的方法有季(月)别平均法和移动平均法两种:a.季(月)别平均法。就是把各年度的数值分季(或月)加以平均,除以各年季(或月)的总平均数,得出各季(月)指数。这种方法可以用来分析生产、销售、原材料储备、预计资金周转需要量等方面的经济事物的季节性变动;b.移动平均法。即应用移动平均数计算比例求典型季节指数。
8. 市场寿命周期预测法 就是对产品市场寿命周期的分析研究。例如对处于成长期的产品预测其销售量,最常用的一种方法就是根据统计资料,按时间序列画成曲线图,再将曲线外延,即得到未来销售发展趋势。最简单的外延方法是直线外延法,适用于对耐用消费品的预测。这种方法简单、直观、易于掌握。
1.简单时间序列平滑法\简单移动平均法\简单时间序列法(Simple Time Series Techniques)
所谓时间序列平滑预测是指用平均的方法,把时间序列中的随机波动剔除掉,使序列变得比较平滑,以反映出其基本轨迹,并结合一定的模型进行预测。
简单时间序列法公式:
F(T+1)=(1 / N) * Σ X(I)
X(I)为时间序列的第I期的实际值
F(T+1)为预测值
N为平均的个数
T为预测的年份
注:时间序列周期数选3
例:1979、1980、1981年的销售额