收集的位操作技巧N个,希望新人捧场,高手斧正,大虾补充 /******************************************************************/ 检测一个无符号数是不为2^n-1(^为幂): x&(x+1) 将最右侧0位改为1位: x | (x+1) 二进制补码运算公式: -x = ~x + 1 = ~(x-1) ~x = -x-1 -(~x) = x+1 ~(-x) = x-1 x+y = x - ~y - 1 = (x|y)+(x&y) x-y = x + ~y + 1 = (x|~y)-(~x&y) x^y = (x|y)-(x&y) x|y = (x&~y)+y x&y = (~x|y)-~x x==y: ~(x-y|y-x) x!=y: x-y|y-x x< y: (x-y)^((x^y)&((x-y)^x)) x<=y: (x|~y)&((x^y)|~(y-x)) x< y: (~x&y)|((~x|y)&(x-y))//无符号x,y比较 x<=y: (~x|y)&((x^y)|~(y-x))//无符号x,y比较 使用位运算的无分支代码: 计算绝对值 int abs( int x ) { int y ; y = x >> 31 ; return (x^y)-y ;//or: (x+y)^y } 符号函数:sign(x) = -1, x<0; 0, x == 0 ; 1, x > 0 int sign(int x) { return (x>>31) | (unsigned(-x))>>31 ;//x=-2^31时失败(^为幂) } 三值比较:cmp(x,y) = -1, x<y; 0, x==y; 1, x > y int cmp( int x, int y ) { return (x>y)-(x-y) ; } doz=x-y, x>=y; 0, x<y int doz(int x, int y ) { int d ; d = x-y ; return d & ((~(d^((x^y)&(d^x))))>>31) ; } int max(int x, int y ) { int m ; m = (x-y)>>31 ; return y & m | x & ~m ; } 不使用第三方交换x,y: 1.x ^= y ; y ^= x ; x ^= y ; 2.x = x+y ; y = x-y ; x = x-y ; 3.x = x-y ; y = y+x ; x = y-x ; 4.x = y-x ; x = y-x ; x = x+y ; 双值交换:x = a, x==b; b, x==a//常规编码为x = x==a ? b :a ; 1.x = a+b-x ; 2.x = a^b^x ; 下舍入到2的k次方的倍数: 1.x & ((-1)<<k) 2.(((unsigned)x)>>k)<<k 上舍入: 1. t = (1<<k)-1 ; x = (x+t)&~t ; 2.t = (-1)<<k ; x = (x-t-1)&t ; 位计数,统计1位的数量: 1. int pop(unsigned x) { x = x-((x>>1)&0x55555555) ; x = (x&0x33333333) + ((x>>2) & 0x33333333 ) ; x = (x+(x>>4)) & 0x0f0f0f0f ; x = x + (x>>8) ; x = x + (x>>16) ; return x & 0x0000003f ; } 2. int pop(unsigned x) { static char table[256] = { 0,1,1,2, 1,2,2,3, ...., 6,7,7,8 } ; return table[x&0xff]+table[(x>>8)&0xff]+table[(x>>16)&0xff]+table[(x>>24)] ; } 奇偶性计算: x = x ^ ( x>>1 ) ; x = x ^ ( x>>2 ) ; x = x ^ ( x>>4 ) ; x = x ^ ( x>>8 ) ; x = x ^ ( x>>16 ) ; 结果中位于x最低位,对无符号x,结果的第i位是原数第i位到最左侧位的奇偶性 位反转: unsigned rev(unsigned x) { x = (x & 0x55555555) << 1 | (x>>1) & 0x55555555 ; x = (x & 0x33333333) << 2 | (x>>2) & 0x33333333 ; x = (x & 0x0f0f0f0f) << 4 | (x>>4) & 0x0f0f0f0f ; x = (x<<24) | ((x&0xff00)<<8) | ((x>>8) & 0xff00) | (x>>24) ; return x ; } 递增位反转后的数: unsigned inc_r(unsigned x) { unsigned m = 0x80000000 ; x ^= m ; if( (int)x >= 0 ) do { m >>= 1 ; x ^= m ; } while( x < m ) ; return x ; } 混选位: abcd efgh ijkl mnop ABCD EFGH IJKL MNOP->aAbB cCdD eEfF gGhH iIjJ kKlL mMnN oOpP unsigned ps(unsigned x) { unsigned t ; t = (x ^ (x>>8)) & 0x0000ff00; x = x ^ t ^ (t<<8) ; t = (x ^ (x>>4)) & 0x00f000f0; x = x ^ t ^ (t<<4) ; t = (x ^ (x>>2)) & 0x0c0c0c0c; x = x ^ t ^ (t<<2) ; t = (x ^ (x>>1)) & 0x22222222; x = x ^ t ^ (t<<1) ; return x ; } 位压缩: 选择并右移字x中对应于掩码m的1位的位,如:compress(abcdefgh,01010101)=0000bdfh compress_left(x,m)操作与此类似,但结果位在左边: bdfh0000. unsigned compress(unsigned x, unsigned m) { unsigned mk, mp, mv, t ; int i ; x &= m ; mk = ~m << 1 ; for( i = 0 ; i < 5 ; ++i ) { mp = mk ^ ( mk << 1) ; mp ^= ( mp << 2 ) ; mp ^= ( mp << 4 ) ; mp ^= ( mp << 8 ) ; mp ^= ( mp << 16 ) ; mv = mp & m ; m = m ^ mv | (mv >> (1<<i) ) ; t = x & mv ; x = x ^ t | ( t >> ( 1<<i) ) ; mk = mk & ~mp ; } return x ; } 位置换: 用32个5位数表示从最低位开始的位的目标位置,结果是一个32*5的位矩阵, 将该矩阵沿次对角线转置后用5个32位字p[5]存放。 SAG(x,m) = compress_left(x,m) | compress(x,~m) ; 准备工作: void init( unsigned *p ) { p[1] = SAG( p[1], p[0] ) ; p[2] = SAG( SAG( p[2], p[0]), p[1] ) ; p[3] = SAG( SAG( SAG( p[3], p[0] ), p[1]), p[2] ) ; p[4] = SAG( SAG( SAG( SAG( p[4], p[0] ), p[1]) ,p[2]), p[3] ) ; } 实际置换: int rep( unsigned x ) { x = SAG(x,p[0]); x = SAG(x,p[1]); x = SAG(x,p[2]); x = SAG(x,p[3]); x = SAG(x,p[4]); return x ; } 二进制码到GRAY码的转换: unsigned B2G(unsigned B ) { return B ^ (B>>1) ; } GRAY码到二进制码: unsigned G2B(unsigned G) { unsigned B ; B = G ^ (G>>1) ; B = G ^ (G>>2) ; B = G ^ (G>>4) ; B = G ^ (G>>8) ; B = G ^ (G>>16) ; return B ; } 找出最左0字节的位置: int zbytel( unsigned x ) { static cahr table[16] = { 4,3,2,2, 1,1,1,1, 0,0,0,0, 0,0,0,0 } ; unsigned y ; y = (x&0x7f7f7f7f) + 0x7f7f7f7f ; y = ~(y|x|0x7f7f7f7f) ; return table[y*0x00204081 >> 28] ;//乘法可用移位和加完成 } /******************************************************************/
二进制位操作技巧
最新推荐文章于 2023-10-16 17:55:53 发布