Problem
Consider a function which, for a given whole number n, returns the number of ones required when writing out all numbers between 0 and n.
For example, f(13)=6. Notice that f(1)=1. What is the next largest n such that f(n)=n?
这个问题从数学角度看可以转化为如下问题:一个m位的整数n,当数字1处于1到m位置上时,其余的m-1位有多少种小于等于整数n的排列?
如果从程序角度出发,这个问题也许更简单:对每一个小于等于n的整数进行分解,如果分解位为1,则计数器加1。这样程序用两个循环可以解决。第一个循环整数从1到n,第二个循环用来分解整数n。部分代码如下:
int countones(int n)
{int count = 0;
for (int i=1;i<=n;i++)
{
int j=i;
while(j/10!=0)
{
if (j%10 == 1) count=count+1;
j=j/10;
}
if (j%10 == 1) count=count+1;
}
return count;
}


被折叠的 条评论
为什么被折叠?



