俄罗斯方块可以永无止境地玩下去吗?

大家在玩俄罗斯方块的时候有没有想过这样一个问题:如果玩家足够牛B的话,是不是永远也不可能玩死?换句话说,假设你是万恶的游戏机,你打算害死你 面前的玩家;你知道任意时刻游戏的状态,并可以有针对性地给出一些明显不合适的方块,尽量迫使玩家面对最坏情况。那么,你有没有一种算法能保证害死玩家, 或者玩家无论如何都存在一种必胜策略呢?注意,俄罗斯方块的游戏区域是一个宽为10,高为20的矩形,并且玩家可以预先看到下一个给出的方块是什么。在设 计策略时,你必需考虑到这一点。

  

    相信很多人有过这样的经历:玩俄罗斯方块时一开局就给你一个“S”型方块,让完美主义者感到异常别扭;结果,第二个方块还是这个“S”,第 三个方块依旧是“S”,相当令人崩溃。于是,我们开始猜测,如果游戏机给你无穷个“S”形方块,玩家是不是就没有解了?答案是否定的。如图1,从第10步 开始,整个局面产生一个循环;只要机器给的一直都是“S”方块,玩家可以不断重复这几个步骤,保证永远也死不了。

    不过,这个循环是在游戏场地清空了的情况下才产生的。有人会进一步想了,要是在玩着玩着,看着你局势不好时突然给你无穷多个“S”方块呢?事实上,此时局面的循环依然可能存在,如图2。在第5个“S”形方块落地后,循环再次产生。

 

    俄罗斯方块真的不可能玩死吗?1988年,John Brzustowski的一篇论文 指 出,俄罗斯方块游戏无解并非不可能。它给出了一种算法可以保证游戏机能够害死玩家,即使我们要求它必须提前向玩家展示出下一个方块的形状。构造的关键在 于,整个游戏的局面个数是有限的(2的200次方),如果玩家一直不死,在某一时刻必然会重复某一状态。我们把两次重复状态及其之间的游戏过程叫做一个“ 循环”,这个循环实际影响到的那些行就叫做“实际循环区”。例如,图2就是一个循环,这个循环的“实际循环区”是从第4行到第7行这四行。

  

    我们把宽为10的游戏区域划分为5个宽为2的“通道”,从左至右用1到5标号。注意到图1和图2中的两个循环都有一个共同点:每个“S”形 方块最终都完全落在某个通道内。事实上,对于任意一个只有“S”形方块的循环,我们都有这个结论。也就是说,如果游戏机一直给你“S”形的方块,你却用它 们弄出了一个循环,那只有一种可能:所有“S”形方块的下落位置都没有跨越通道(就像图3中的紫色方块那样,而非绿色方块那样)。
    为了证明这一点,我们对通道编号施归纳。令命题P(x)表示,如果某个“S”形方块(或它的其中一部分)落在了通道x的左边,那它一定完全落在某 个通道内。P(1)显然成立:方块根本不可能占据通道1左边的某个格子,因为通道1左边啥都没有。下面我们说明,当P(n)为真时,P(n+1)也为真。

  

    我们首先要证明一个引理:在循环中的任意时刻,通道n的实际循环区内绝对不可能出现形如“□■ ”的两个并排的格子。如图4.1,假设图中星号方块所在行是通道n的实际循环区内位置最低的“□■ ”的结构。假如这一行被消掉了,又由归纳假设,不存在哪个“S”形方块跨越了该通道的左边界,因此只有一种可能:某个“S”形方块从左侧面挤了进来(如图4.2)。但这样一来,我们又产生了一个更低的“□■ ”,矛盾。这就是说,星号方块所在行一直没被消去。但这也是不可能的,因为实际循环区内是一个新陈代谢、以旧换新的更替过程,每一行最后都是会被消除的。

  

    接下来,考虑命题P(n+1)。要想让“S”形方块占据通道n的格子,只有图5这四种情况。但是,由于我们之前证明了通道n中不能存在“□■ ”,因此在这个“S”形方块落下之前,星号方块都是已经有了的了。注意到,每一个“S”形方块的下落都致使“■□ ”形结构的减少,但第一种情形除外——它消除了一个“■□ ”形结构,但在其上方带来了一个新的,使得“■□ ”形结构个数保持不变。没有哪种情形能够增加“■□ ”的个数。但是,通道n的“■□ ”形结构个数应该是恒定的,因为它在一个循环区里。因此,只有第一种情况才能够被接受。

    因此,仅含有“S”形方块的循环只有一种情况——“S”形方块在各个通道内重叠,填满并消除若干行后回到初始状态。实际循环区内的每个通道都是一个模样:底下是0个或多个“■■ ”,顶部一个“■□ ”。注意,最右侧那个通道的最顶端是一个“■□ ”,右边这个空白一辈子也不可能用“Z”形方块填上。也就是说,在一个只含“S”形方块的循环区内,必然会有某一行,它的最右侧是一个“■□ ”,它保证了该行不能仅用“Z”形方块消掉。如图6所示,箭头所指的行无法单用“Z”形方块消除,因为星号位置不可能用“Z”形方块填充。

  

    下面我们给出游戏机害死人的算法:
    1. 不断给出“S”形方块并显示下一个方块也为“S”,直到出现一个循环;
    2. 给一个“S”形方块并显示下一个方块为“Z”;
    3. 不断给出“Z”形方块并显示下一个方块也为“Z”,直到出现一个循环;
    4. 给一个“Z”形方块并显示下一个方块为“S”;
    5. 跳回1并重复执行。

  

    这样的话,玩家为什么会无解呢?由上面的结论,在第1步后,游戏区域中出现了一个不能用“Z”消除的行。即使再给你一个“S”形方块,这一 点仍然无法挽救,因为填充星号空格的唯一途径就是插一个“S”进去,但这立即又产生了一个“Z”永远放不进去的空位。然后,玩家就拿到了一大堆“Z”,最 终必然会产生另一个循环,且这个循环区在刚才那个无法消去的行之上(循环区不可能包含一个不能消除的行,因为正如前面所说,一个实际循环区的所有行最终都 是会被消掉的,这样才可能循环)。这个循环区的最左边那个通道将会产生一个“□■ ”结构,是“S”所不能消去的。于是,游戏机又给出一大堆的“S”,最终使得两种无法消去的行交替出现,直至Game Over。

    有两点值得注意。一、虽然我们这里假设游戏机是有主观能动性的,但事实上呢,即使方块是随机出的,如果你足够倒霉的话,这个特殊的方块序列 可能恰好就让你一个不错地碰上了;虽然这种怪事的发生概率极低,但理论上说仍然是可能的,因此俄罗斯方块终究不是玩不死的,总有一个时候会Game Over。二、这个结论可以直接扩展到场地为任意宽度的俄罗斯方块游戏。当场地宽为偶数时,上述证明同样有效;当场地宽为奇数时,无穷多个方形方块就可以 直接干掉玩家。
 

当然可以,以下是一个简单的俄罗斯方块的 Python 代码示例: ``` python import pygame import random # 初始化Pygame pygame.init() # 创建游戏窗口 screen_width = 640 screen_height = 480 screen = pygame.display.set_mode((screen_width, screen_height)) pygame.display.set_caption("俄罗斯方块") # 定义颜色 BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) YELLOW = (255, 255, 0) # 定义方块大小和格子数 block_size = 20 grid_width = screen_width // block_size grid_height = screen_height // block_size # 定义方块形状 shapes = [ [[1, 1], [1, 1]], [[0, 2, 0], [2, 2, 2]], [[0, 3, 3], [3, 3, 0]], [[4, 4, 0], [0, 4, 4]], [[5, 5, 5, 5]], [[6, 6, 6], [0, 6, 0], [0, 6, 0]], [[0, 7, 0], [7, 7, 7], [0, 7, 0]] ] # 定义方块颜色 colors = [ BLACK, RED, GREEN, BLUE, YELLOW ] # 定义游戏变量 score = 0 grid = [[0] * grid_width for _ in range(grid_height)] cur_shape = random.choice(shapes) cur_color = random.choice(colors) cur_x = grid_width // 2 - len(cur_shape[0]) // 2 cur_y = 0 # 定义游戏函数 def draw_block(x, y, color): pygame.draw.rect(screen, color, (x * block_size, y * block_size, block_size, block_size)) def draw_shape(shape, x, y, color): for i in range(len(shape)): for j in range(len(shape[i])): if shape[i][j] != 0: draw_block(x + j, y + i, color) def check_collision(shape, x, y): for i in range(len(shape)): for j in range(len(shape[i])): if shape[i][j] != 0 and (y + i >= grid_height or x + j < 0 or x + j >= grid_width or grid[y + i][x + j] != 0): return True return False def place_shape(shape, x, y, color): for i in range(len(shape)): for j in range(len(shape[i])): if shape[i][j] != 0: grid[y + i][x + j] = color def remove_lines(): global score lines_removed = 0 for i in range(grid_height): if all(grid[i]): grid.pop(i) grid.insert(0, [0] * grid_width) lines_removed += 1 score += lines_removed ** 2 # 游戏循环 clock = pygame.time.Clock() while True: # 处理游戏事件 for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: cur_x -= 1 if check_collision(cur_shape, cur_x, cur_y): cur_x += 1 elif event.key == pygame.K_RIGHT: cur_x += 1 if check_collision(cur_shape, cur_x, cur_y): cur_x -= 1 elif event.key == pygame.K_UP: old_shape = cur_shape cur_shape = [[cur_shape[j][i] for j in range(len(cur_shape))] for i in range(len(cur_shape[0]) - 1, -1, -1)] if check_collision(cur_shape, cur_x, cur_y): cur_shape = old_shape elif event.key == pygame.K_DOWN: cur_y += 1 if check_collision(cur_shape, cur_x, cur_y): cur_y -= 1 # 更新游戏状态 cur_y += 1 if check_collision(cur_shape, cur_x, cur_y): cur_y -= 1 place_shape(cur_shape, cur_x, cur_y, cur_color) remove_lines() cur_shape = random.choice(shapes) cur_color = random.choice(colors) cur_x = grid_width // 2 - len(cur_shape[0]) // 2 cur_y = 0 if check_collision(cur_shape, cur_x, cur_y): pygame.quit() exit() # 绘制游戏界面 screen.fill(WHITE) for i in range(grid_height): for j in range(grid_width): if grid[i][j] != 0: draw_block(j, i, colors[grid[i][j]]) draw_shape(cur_shape, cur_x, cur_y, cur_color) pygame.display.set_caption("俄罗斯方块 - 得分: {}".format(score)) pygame.display.flip() # 控制游戏速度 clock.tick(10) ``` 这是一个非常简单的俄罗斯方块示例,只有基本的游戏逻辑和图形界面。你可以根据自己的需要进行修改和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值