1、分块
void change(int l,int r,int delta){
int i,L,R,l1=(l-1)/k+1,l2=(l-1)%k+1,r1=(r-1)/k+1,r2=(r-1)%k+1;
L=l1,R=r1;
if(L==R &&(l2!=1 || r2!=k)){
fo(i,l2,r2)num[i+(L-1)*k]+=delta;
return 0;
}
if(l2!=1){
fo(i,l2,k)num[i+(L-1)*k]+=delta;
L++;
}
if(r2!=k){
fo(i,1,r2)num[i+(R-1)*k]+=delta;
R--;
}
fo(i,L,R)block[i]++;
}
2、权值线段树(查找第k小)查找部分
int findkth(int ps,int l,int r,int x){
if(l==r)return l;
int wz=(l+r)>>1;
if(x>tr[ps<<1].sum)findkth((ps<<1)+1,wz+1,r,x-tr[ps<<1].sum);
else findkth(ps<<1,l,wz,x);
}
3、树链剖分(递归版)
void dg1(int x){
siz[x]=1;
for(int i=head[x];i;i=edge[i].next)
if(fa[x]!=edge[i].to){
fa[edge[i].to]=x;
dep[edge[i].to]=dep[x]+1;
dg1(edge[i].to);
siz[x]+=siz[edge[i].to];
if(!hv[x]||siz[hv[x]]<siz[edge[i].to])hv[x]=edge[i].to;
}
}
第一个递归:求 s i z [ x ] siz[x] siz[x]和深度,顺便找重儿子
void dg2(int x){
dfn[x]=++T;tar[T]=x;
if(hv[x]){
top[hv[x]]=top[x];
dg2(hv[x]);
}
for(int i=head[x];i;i=edge[i].next)
if(fa[x]!=edge[i].to&&hv[x]!=edge[i].to)dg2(edge[i].to);
}
第二个递归:找到每个点的重链链顶,以及基于重链的
d
f
n
dfn
dfn序列:
①有重儿子先递归重儿子。②其次递归轻儿子。
void oper(int x,int y){
while(1){
int tx=top[x],ty=top[y];
if(dep[tx]<dep[ty]){
swap(x,y);
swap(tx,ty);
}
if(tx==ty)break;
modify(dfn[tx],dfn[x]);
x=fa[tx];
}
if(dfn[x]>dfn[y])swap(x,y);
modify(dfn[x],dfn[y]);
}
区间修改/查询:先跳深度大的链顶的那条链,既能保证正确性,又能保证时间复杂度。
4、堆(手打的)
a数组记录着堆里要维护的值。
b[i]表示原数组中第i个数在堆中的位置。
c[i]表示堆中第i个元素在原数组中的位置。
void heap_swap(int x,int y){
swap(a[x],a[y]);
swap(b[c[x]],b[c[y]]);
swap(c[x],c[y]);
}
void heap_up(int ps){
while(1){
int fa=ps/2;
if(a[ps]<a[fa])heap_swap(fa,ps);else break;
ps=fa;
}
}
void heap_down(int x){
while(1){
int mx,l=ps<<1,r=(ps<<1)+1;
if(l>tot)break;
mx=l;
if(r<=tot && a[r]<a[mx])mx=r;
if(a[ps]<a[mx])heap_swap(mx,ps);else break;
ps=mx;
}
}
void heap_push(int x,int y){
a[++tot]=x;
c[tot]=y;
b[y]=tot;
heap_up(x);
}
void heap_pop(){
heap_swap(1,tot);
heap_down(1);
}
void heap_del(int x){
heap_swap(x,tot);
heap_down(x);
heap_up(x);
}
5、找树的直径
一个显然的结论,假设这条直径为 s → t s→t s→t ,那么对于任意一点u,从u搜到的最远点一定是 s s s或者 t t t中的一个。
void findD(int x,int y){
for(int i=head[x];i;i=edge[i].next)
if(fa[x]!=edge[i].to){
fa[edge[i].to]=0;
dis[edge[i].to]=y+edge[i].val;
if(dis[edge[i].to]>mx){
mx=dis[edge[i].to];
wz=edge[i].to;
}
findD(edge[i].to,mx);
}
}
int main(){
mx=0;
findD(1,0);
memset(fa,0,sizeof(fa));
root=wz;
findD(wz,0);
//此时root和新的wz形成一条直径,是一条链,可以通过跳fa[]输出这条直径。
}
6、tarjan求lca
离线做,建两个图,一个代表树,另一个代表需要查询lca的两节点。
做法:对于没有递归完的点x,设
f
a
[
x
]
=
x
fa[x]=x
fa[x]=x,如果x递归完了,那么
f
a
[
x
]
=
x
的
父
亲
fa[x]=x的父亲
fa[x]=x的父亲。然后对于询问(x,y),如果y被遍历过,那么
l
c
a
=
f
i
n
d
(
y
)
lca=find(y)
lca=find(y),即y的并查集祖先(y的没有递归完的深度最小的祖先)。
正确性:对于
(
x
,
y
)
(x,y)
(x,y)如果y已经递归完了,那么
f
a
[
y
]
fa[y]
fa[y]指回了上面,此时
l
c
a
(
x
,
y
)
lca(x,y)
lca(x,y)是没有递归完的,所以用并查集找到的祖先一定是
l
c
a
(
x
,
y
)
lca(x,y)
lca(x,y)。
int find(int x){
return fa[x]==x?x:fa[x]=get(fa[x]);
}
void tarjan(int x){
fa[x]=x;
vis[x]=1;
for(int i=head[x];i;i=edge[i].next)
if(!vis[edge[i].to]){
tarjan(edge[i].to);
fa[edge[i].to]=x;
}
for(int i=qhead[x];i;i=qedge[i].next)
if(!vis[qedge[i].to]){
qedge[i].lca=find(qedge[i].to);
qedge[i^1].lca=qedge[i].lca;
}
}
int main(){
scanf("%d%d",&n,&q);
tot=1;
fo(i,1,n){
scanf("%d%d",&x,&y);
lb(x,y);lb(y,x);//连边过程自行脑补
}
fo(i,1,q){
scanf("%d%d",&x,&y);
lbq(x,y);lbq(y,x);//连边过程自行脑补
}
fo(i,1,q)printf("%d\n",qedge[i*2].lca);
}
7.Splay基本操作
尤其是选择,看清楚具体的节点的个数。以及初始的splay该怎么建,所有该初始化的变量都不要漏掉。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define N 100010
#define Null 100005
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
struct note{
int siz,a,f,sum;
int c[2];
};note tr[N];
int a[N];
int i,j,k,l,r,n,m,ans;
int root;
int dir(int x){
return tr[tr[x].f].c[1]==x;
}
void update(int x){
tr[x].siz=tr[tr[x].c[0]].siz+tr[tr[x].c[1]].siz+1;
tr[x].sum=tr[tr[x].c[0]].sum+tr[tr[x].c[1]].sum+tr[x].a;
}
void sc(int x,int y,int z){
tr[x].c[z]=y;
if(y!=Null)tr[y].f=x;
}
void zig(int x){
int y=tr[x].f,z=dir(x);
sc(y,tr[x].c[z^1],z);
if(y==root)tr[x].f=Null,root=x;
else sc(tr[y].f,x,dir(y));
sc(x,y,z^1);
update(y);update(x);
}
void splay(int x,int rt){
while(tr[x].f!=rt){
int y=tr[x].f;
if(tr[y].f!=rt)
if(dir(x)==dir(y))zig(y);else zig(x);
zig(x);
}
update(x);
if(rt==Null)root=x;
}
void select(int k,int rt){
int x=root;
while(tr[tr[x].c[0]].siz!=k){
if(tr[tr[x].c[0]].siz>k)x=tr[x].c[0];
else{
k-=tr[tr[x].c[0]].siz+1;
x=tr[x].c[1];
}
}
splay(x,rt);
}
int main(){
scanf("%d",&n);
fo(i,1,n)scanf("%d",&a[i]);
fo(i,0,N-1)tr[i].c[0]=tr[i].c[1]=tr[i].f=Null;
fo(i,1,n+2){
if(i<n+2)tr[i].c[1]=i+1;
tr[i].siz=n+3-i;
if(i>1)tr[i].f=i-1;
}
fd(i,n+1,1){
tr[i].sum=tr[i+1].sum+a[i-1];
tr[i].a=a[i-1];
}
root=1;
splay(n+2,Null);
scanf("%d",&m);
while(m--){
scanf("%d%d",&l,&r);
select(l-1,Null);
select(r+1,root);
ans=tr[tr[tr[root].c[1]].c[0]].sum;
printf("%d\n",ans);
}
return 0;
}
8.主席树
用来维护一个区间的信息。其功能主要是查询一个区间的一个范围的数的个数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 100010
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
struct note{
int sum,ls,rs;
};note tr[N*20];
int a[N],o[N];
int i,j,k,l,r,n,m,ans;
int temp;
int cnt,gs;
int rt[N];
int query(int px,int py,int l,int r,int x){
if(l==r)return o[l];
int wz=(l+r)>>1;
temp=tr[tr[px].ls].sum-tr[tr[py].ls].sum;
if(temp>=x)return query(tr[px].ls,tr[py].ls,l,wz,x);
else return query(tr[px].rs,tr[py].rs,wz+1,r,x-temp);
}
void change(int &px,int py,int l,int r,int x){
px=++gs;
tr[px]=tr[py];
tr[px].sum++;
if(l==r)return;
int wz=(l+r)>>1;
if(x<=wz)change(tr[px].ls,tr[py].ls,l,wz,x);
else change(tr[px].rs,tr[py].rs,wz+1,r,x);
}
int main(){
freopen("zxs.in","r",stdin);
scanf("%d%d",&n,&m);
fo(i,1,n)scanf("%d",&a[i]),o[i]=a[i];
sort(o+1,o+n+1);
cnt=unique(o+1,o+n+1)-o-1;
fo(i,1,n)a[i]=lower_bound(o+1,o+cnt+1,a[i])-o;
fo(i,1,n)
change(rt[i],rt[i-1],1,n,a[i]);
while(m--){
scanf("%d%d%d",&l,&r,&k);
ans=query(rt[r],rt[l-1],1,n,k);
printf("%d\n",ans);
}
return 0;
}
本文深入探讨了数据结构与算法的关键概念,包括分块、权值线段树、树链剖分、堆、找树的直径、Tarjan求LCA、Splay基本操作和主席树等高级主题。通过实例和代码解析,帮助读者掌握复杂数据结构和高效算法的设计与应用。

被折叠的 条评论
为什么被折叠?



