简述问题
求 f n f_n fn,其中 f n f_n fn的值需要 f 0 , f 1 , . . . , f n − 1 f_0,f_1,...,f_{n-1} f0,f1,...,fn−1已知。
简单的例子:
f n = ∑ i = 0 n f i ∗ g n − i f_n=\sum_{i=0}^nf_i*g_{n-i} fn=∑i=0nfi∗gn−i
解法
普通解法直接 O ( n 2 ) O(n^2) O(n2)暴力搞。
快些?分治NTT。
思想:CDQ分治。考虑分值区间 [ l , r ] [l,r] [l,r]中 f [ l , m i d ] f_{[l,mid]} f[l,mid]对 f [ m i d + 1 , r ] f_{[mid+1,r]} f[mid+1,r]的贡献。
考虑 f x , x ∈ [ l , m i d ] f_x,x∈[l,mid] fx,x∈[l,mid]对 f y , y ∈ [ m i d + 1 , r ] f_y,y∈[mid+1,r] fy,y∈[mid+1,r]的影响。
显然, f x f_x

本文介绍了如何使用分治NTT(Number Theoretic Transform)算法来优化从已知项求解fn的问题。通过CDQ分治的思想,分析了fx对fy的贡献,并给出伪代码说明如何在O(n log n)的时间复杂度内完成两个多项式的乘法。结合例题JZOJ 3303城市规划,进一步解释了分治NTT在无向连通图计数问题中的应用。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



