package
org.honghe;
import
weka.core.Attribute;
import
weka.core.FastVector;
import
weka.core.Instance;
import
weka.core.Instances;
import
weka.core.converters.ConverterUtils.DataSink;
public
class
AttTest {
/**
*
*/
private
static
void
test()
throws
Exception{
FastVector atts;
FastVector attVals;
Instances data;
double
[] vals;
//1. set up attributes
atts =
new
FastVector();
// - numeric
atts.addElement(
new
Attribute(
"att1"
));
// - nominal
attVals =
new
FastVector();
for
(
int
i =
0
; i <
5
; i++) {
attVals.addElement(
"val"
+ (i +
1
));
}
//数组中添加数组
atts.addElement(
new
Attribute(
"att2"
, attVals));
// - string
atts.addElement(
new
Attribute(
"att3"
, (FastVector)
null
));
// - date
atts.addElement(
new
Attribute(
"att4"
,
"yyyy-MM-dd"
));
//2. create Instances object
data =
new
Instances(
"myRelation"
, atts,
0
);
//3. fill with data
//first instance
vals =
new
double
[data.numAttributes()];
// - numeric
vals[
0
] = Math.PI;
// - nominal
vals[
1
] = attVals.indexOf(
"val3"
);
// - string
vals[
2
] = data.attribute(
2
).addStringValue(
"This is a string!"
);
// - date
vals[
3
] = data.attribute(
3
).parseDate(
"2012-11-22"
);
// add
data.add(
new
Instance(
1.0
, vals));
// 4. output data
System.out.println(data);
// 5. write to file
DataSink.write(
"/dict/arffData.arff"
, data);
}
public
static
void
main(String[] args)
throws
Exception {
test();
}
}
|
weka: 生成并保存ARFF格式数据
最新推荐文章于 2022-09-16 22:08:09 发布