数据结构-----最长回文子串

题目描述

给定一个字符串,找出该字符串的最长回文子串。回文字符串指的就是从左右两边看都一样的字符串,如aba,cddc都是回文字符串。字符串abbacdc存在的回文子串有abba和cdc,因此它的最长回文子串为abba。


一个容易犯的错误

初看这个问题可能想到这样的方法:对字符串S逆序得到新的字符串S',再求S和S'的最长公共子串,这样求出的就是最长回文子串。

如S="caba", S'="abac",则S和S'的最长公共子串为aba,这个是正确的。

但是如果S = “abacdfgdcaba”, S’ = “abacdgfdcaba”,则S和S'的最长公共子串为abacd,显然这不是回文字符串。因此这种方法是错误的。

判定一个字符串是否是回文字符串

要找出最长回文子串,首先要解决判断一个字符串是否是回文字符串的问题。最显而易见的方法是设定两个变量i和j,分别指向字符串首部和尾部,比较是否相等,然后i++,j--,直到i >= j为止。下面的代码是判断字符串str[i, j]是不是回文字符串,即字符串str从i到j的这一段子串是否是回文字符串,在后面会用到这个方法。

bool isPalindrome(string str, int start, int end) 
{
	while (start < end) {
		if (str[start] != str[end])
			return false;
		++start, --end;
	}
	return true;
}


 

蛮力法求最长回文子串

蛮力法通过对字符串所有子串进行判断,如果是回文字符串,则更新最长回文的长度。因为长度为N的字符串的子串一共可能有(1+N)*N/2个,每次判断子串需要O(N)的时间,所以一共需要O(N^3)时间来求取最长回文子串。

string longestPalindrome(string str) 
{
	int len = str.length(), max = 1; 
	int start=0;
        /*遍历字符串所有的子串,若子串为回文字符串则更新最长回文的长度*/
        for (int i=0; i<len; i++) {
		for (int j=i; j<len; j++) {
			if (isPalindrome(str, i, j)) { //如果str[i,j]是回文,则判断其长度是否大于最大值,大于则更新长度和位置
				int pLen = j - i + 1;
				if (pLen > max) {
					start = i;  //更新最长回文起始位置
					max = pLen; //更新最长回文的长度
				}
			}
		}
	}
	return str.substr(start, max); 
}

中心法求最长回文子串

还有一个更简单的方法可以使用O(N^2)时间、不需要额外的空间求最长回文子串。我们知道回文字符串是以字符串中心对称的,如abba以及aba等。一个更好的办法是从中间开始判断,因为回文字符串以字符串中心对称。一个长度为N的字符串可能的对称中心有2N-1个,至于这里为什么是2N-1而不是N个,是因为可能对称的点可能是两个字符之间,比如abba的对称点就是第一个字母b和第二个字母b的中间。因此可以依次对2N-1个中心点进行判断,求出最长的回文字符串即可。根据该思路可以写出下面的代码。

中心法求最长回文子串

还有一个更简单的方法可以使用O(N^2)时间、不需要额外的空间求最长回文子串。我们知道回文字符串是以字符串中心对称的,如abba以及aba等。一个更好的办法是从中间开始判断,因为回文字符串以字符串中心对称。一个长度为N的字符串可能的对称中心有2N-1个,至于这里为什么是2N-1而不是N个,是因为可能对称的点可能是两个字符之间,比如abba的对称点就是第一个字母b和第二个字母b的中间。因此可以依次对2N-1个中心点进行判断,求出最长的回文字符串即可。根据该思路可以写出下面的代码。

string expandAroundCenter(string s, int l, int r)
{
	int n = s.length();
	while (l>=0 && r<=n-1 && s[l]==s[r]) {
		l--, r++;
	}
	return s.substr(l+1, r-l-1);
}

string longestPalindrome3(string s)
{
	int n = s.length();
	if (n == 0) return "";
	string longest = s.substr(0, 1);
	for (int i=0; i<n; i++) {
		string p1 = expandAroundCenter(s, i, i); //以位置i为中心的最长回文字符串
		if (p1.length() > longest.length())
			longest = p1;

		string p2 = expandAroundCenter(s, i, i+1); //以i和i+1之间的位置为中心的最长回文字符串
		if (p2.length() > longest.length())
			longest = p2;
	}
	return longest;
}


以上内容转自:http://blog.csdn.net/sgbfblog/article/details/7979541

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值