这仍然是一道关于A/B的题,只不过A和B都换成了多项式。你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数。
输入格式:
输入分两行,每行给出一个非零多项式,先给出A,再给出B。每行的格式如下:
N e[1] c[1] ... e[N] c[N]
其中N是该多项式非零项的个数,e[i]是第i个非零项的指数,c[i]是第i个非零项的系数。各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系数是非零整数,所有整数在整型范围内。
输出格式:
分两行先后输出商和余,输出格式与输入格式相同,输出的系数保留小数点后1位。同行数字间以1个空格分隔,行首尾不得有多余空格。注意:零多项式是一个特殊多项式,对应输出为0 0 0.0。但非零多项式不能输出零系数(包括舍入后为0.0)的项。在样例中,余多项式其实有常数项-1/27,但因其舍入后为0.0,故不输出。
输入样例:
4 4 1 2 -3 1 -1 0 -1
3 2 3 1 -2 0 1
输出样例:
3 2 0.3 1 0.2 0 -1.0
1 1 -3.1
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
typedef pair<int,double> pa;
pa de[10000],ans[10000];
int n,m,no,e,se;
double c,cc[10000];
int main()
{
cin>>n;
if(n)
{
cin>>e>>c;
se = e;
cc[e] += c;
}
for(int i = 1;i < n;i ++)
{
cin>>e>>c;
cc[e] += c;
}
cin>>m;
for(int i = 0;i < m;i ++)
{
cin>>de[i].first>>de[i].second;
}
se ++;
while(-- se >= de[0].first)
{
double t = cc[se] / de[0].second;
if(t < 0.05 && t > -0.05)
{
continue;
}
ans[no].first = se - de[0].first;
ans[no ++].second = t;
for(int i = 1;i < m;i ++)
{
cc[ans[no - 1].first + de[i].first] -= t * de[i].second;
}
}
if(!no)
{
printf("0 0 0.0");
}
else
{
printf("%d",no);
for(int i = 0;i < no;i ++)
{
printf(" %d %.1f",ans[i].first,ans[i].second);
}
}
int sse = se + 1;
for(int i = 0;i <= se;i ++)
{
if(cc[i] < 0.05 && cc[i] > -0.05)
{
sse --;
}
}
printf("\n%d",sse);
for(int i = se;i >= 0;i --)
{
if(cc[i] < 0.05 && cc[i] > -0.05)
{
continue;
}
printf(" %d %.1f",i,cc[i]);
}
if(!sse)
{
printf(" 0 0.0");
}
}
429

被折叠的 条评论
为什么被折叠?



