2-SAT原来很有趣!

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/huashuimu2003/article/details/88567462

推荐阅读资料

唐浩 《2-SAT问题》
伍昱 《由对称性解2-sat问题》
赵爽 《2-sat解法浅析》

A.HDU 3062 Party

title

HDU 3062
Problem Description

有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席。在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是不会同时出现在聚会上的。有没有可能会有n 个人同时列席?

Input

n: 表示有n对夫妻被邀请 (n<= 1000)
m: 表示有m 对矛盾关系 ( m < (n - 1) * (n -1))
在接下来的m行中,每行会有4个数字,分别是 A1,A2,C1,C2
A1,A2分别表示是夫妻的编号
C1,C2 表示是妻子还是丈夫 ,0表示妻子 ,1是丈夫
夫妻编号从 0 到 n -1

Output

如果存在一种情况 则输出YES
否则输出 NO

Sample Input

2
1
0 1 1 1

Sample Output

YES

Source

2009 Multi-University Training Contest 16 - Host by NIT

Recommend

lcy | We have carefully selected several similar problems for you: 3060 3068 3063 3064 3065

analysis1

裸2-SAT模型,图基本上给好了,判断一下就好。
用 tarjan 算法求强连通,然后判断 iiii&#x27; 是否在同一个连通分量里面就好。

code

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e3+10,maxm=5e5+10;
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1, ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}
int ver[maxm<<1],Next[maxm<<1],head[maxn],len;
inline void add(int x,int y)
{
	ver[++len]=y,Next[len]=head[x],head[x]=len;
}
int dfn[maxn],low[maxn],id;
int Stack[maxn],top;
int belong[maxn],tot;
bool instack[maxn];
inline void tarjan(int x)
{
	dfn[x]=low[x]=++id;
	Stack[++top]=x;
	instack[x]=1;
	for (int i=head[x];i;i=Next[i])
	{
		int y=ver[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if (instack[y])
			low[x]=min(low[x],dfn[y]);
	}
	if (low[x]==dfn[x])
	{
		int k;
		++tot;
		do
		{
			k=Stack[top--];
			belong[k]=tot;
			instack[k]=0;
		} while (k!=x);
	}
}
inline void Clear()
{
	memset(dfn,0,sizeof(dfn));
	memset(low,0,sizeof(low));
	memset(belong,0,sizeof(belong));
	memset(instack,0,sizeof(instack));
	id=top=tot=0;
}
int main()
{
	int n;
	while (~scanf("%d",&n))
	{
		int m;read(m);
		memset(head,0,sizeof(head));
		len=0;
		while (m--)
		{
			int a1,a2,c1,c2;
			read(a1);read(a2);read(c1);read(c2);
			if (c1==1&&c2==1) add(a1+n,a2),add(a2+n,a1);
			if (c1==1&&c2==0) add(a1+n,a2+n),add(a2,a1);
			if (c1==0&&c2==1) add(a1,a2),add(a2+n,a1+n);
			if (c1==0&&c2==0) add(a1,a2+n),add(a2,a1+n);
		}
		Clear();
		for (int i=1;i<=(n<<1);++i)
			if (!dfn[i]) tarjan(i);
		bool flag=1;
		for (int i=1;i<=n;++i)
			if (belong[i]==belong[i+n])
			{
				flag=0;
				break;
			}
		printf(flag?"YES\n":"NO\n");
	}
	return 0;
}

B.POJ 3678 Katu Puzzle

title

POJ 3648
Description

Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:

AND 0 1 OR 0 1 XOR 0 1
0 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1 0

Given a Katu Puzzle, your task is to determine whether it is solvable.

Input

The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.

Output

Output a line containing “YES” or “NO”.

Sample Input

4 4
0 1 1 AND
1 2 1 OR
3 2 0 AND
3 0 0 XOR

Sample Output

YES

Hint

X0 = 1, X1 = 1, X2 = 0, X3 = 1.

Source

POJ Founder Monthly Contest – 2008.07.27, Dagger

analysis

题意是说给出一些变量,他们可以取 0 或 1 ,然后给出一组他们的由 与,或,异或 三种运算组成的式子,问是否有一组可行解,满足这些式子,也是很裸的2-SAT模型。

code

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e3+10;
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1, ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}
int ver[maxn*maxn],Next[maxn*maxn],head[maxn],len;
inline void add(int x,int y)
{
	ver[++len]=y,Next[len]=head[x],head[x]=len;
}
int dfn[maxn],low[maxn],id;
int Stack[maxn],top;
int belong[maxn],tot;
bool instack[maxn];
inline void tarjan(int x)
{
	dfn[x]=low[x]=++id;
	Stack[++top]=x;
	instack[x]=1;
	for (int i=head[x];i;i=Next[i])
	{
		int y=ver[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if (instack[y])
			low[x]=min(low[x],dfn[y]);
	}
	if (low[x]==dfn[x])
	{
		int k;
		++tot;
		do
		{
			k=Stack[top--];
			belong[k]=tot;
			instack[k]=0;
		} while (k!=x);
	}
}
int main()
{
	int n,m;
	read(n);read(m);
	for (int i=1;i<=m;++i)
	{
		int a,b,c;
		char ch[5];
		read(a);read(b);read(c);scanf("%s",ch);
		if (ch[0]=='A')
		{
			if (c==1)
			{
				add(a,b+n),add(a,b),add(a+n,b+n);
				add(b,a+n),add(b,a),add(b+n,a+n);
			}
			else
				add(a+n,b),add(b+n,a);
		}
		else if (ch[0]=='O')
		{
			if (c==1)
				add(a,b+n),add(b,a+n);
			else
			{
				add(a,b),add(a+n,b+n),add(a+n,b);
				add(b,a),add(b+n,a+n),add(b+n,a);
			}
		}
		else
		{
			if (c==1)
			{
				add(a,b+n),add(a+n,b);
				add(b,a+n),add(b+n,a);
			}
			else
			{
				add(a,b),add(a+n,b+n);
				add(b,a),add(b+n,a+n);
			}
		}
	}
	for (int i=1;i<=(n<<1);++i)
		if (!dfn[i]) tarjan(i);
	bool flag=1;
	for (int i=1;i<=n;++i)
		if (belong[i]==belong[i+n])
		{
			flag=0;
			break;
		}
	printf(flag?"YES\n":"NO\n");
	return 0;
}

C.HDU 3715 Go Deeper

title

HDU 3715
Problem Description

Here is a procedure’s pseudocode:

go(int dep, int n, int m)
begin
output the value of dep.
if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
end

In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?

Input

There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).

Output

For each test case, output the result in a single line.

Sample Input

3
2 1
0 1 0
2 1
0 0 0
2 2
0 1 0
1 1 2

Sample Output

1
1
2

Author

CAO, Peng

Source

2010 Asia Chengdu Regional Contest

Recommend

zhouzeyong | We have carefully selected several similar problems for you: 3718 3711 3713 3714 3717

analysis

也是很裸的模型,不过由于解未知,要求找到最大的可行解,所以需要在解的可行区间里面二分查找答案,直到找到最大的可行解。

if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)

我们在 0 到 m 上查找最大可行解时,要想让 dep 值尽量大,就要尽量满足不等式x[a[dep]]+x[b[dep]]!=c[dep](x[ a[ dep ] ] + x[ b[ dep ] ] != c[ dep ])c[dep]c[ dep ]值有三种情况,如下:

if (!c[i]) //x[ a[i] ],x[ b[i] ]不能同时为0
else if (c[i]==1) //x[ a[i] ],x[ b[i] ]不能不同,二者要么同时为0,要么同时为1
else if (c[i]==2) //x[ a[i] ],x[ b[i] ]不能同时为1

根据这个关系建图,就好了。

code

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e4+10;
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1, ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}
int ver[maxn*3],Next[maxn*3],head[maxn],len;
inline void add(int x,int y)
{
	ver[++len]=y,Next[len]=head[x],head[x]=len;
}
int dfn[maxn],low[maxn],id;
int Stack[maxn],top;
int belong[maxn],tot;
bool instack[maxn];
inline void tarjan(int x)
{
	dfn[x]=low[x]=++id;
	Stack[++top]=x;
	instack[x]=1;
	for (int i=head[x];i;i=Next[i])
	{
		int y=ver[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if (instack[y])
			low[x]=min(low[x],dfn[y]);
	}
	if (low[x]==dfn[x])
	{
		int k;
		++tot;
		do
		{
			k=Stack[top--];
			belong[k]=tot;
			instack[k]=0;
		} while (k!=x);
	}
}
inline void Clear()
{
	memset(dfn,0,sizeof(dfn));
	memset(low,0,sizeof(low));
	memset(instack,0,sizeof(instack));
	id=top=0;
}
int a[maxn],b[maxn],c[maxn];
int main()
{
	int t,n,m,ans=0;read(t);
	while (t--)
	{
		read(n);read(m);
		for (int i=1;i<=m;++i)
			read(a[i]),read(b[i]),read(c[i]);
		int l=0,r=m;
		while (l<=r)
		{
			int mid=(l+r)>>1;
			memset(head,0,sizeof(head));
			len=0;
			for (int i=1;i<=mid;++i)
			{
//    			if (!c[i])
//					add(a[i]<<1,b[i]<<1|1),
//					add(b[i]<<1,a[i]<<1|1);
//				else if (c[i]==1)
//					add(a[i]<<1,b[i]<<1),
//					add(a[i]<<1|1,b[i]<<1|1),
//					add(b[i]<<1,a[i]<<1),
//					add(b[i]<<1|1,a[i]<<1|1);
//				else
//					add(a[i]<<1|1,b[i]<<1),
//					add(b[i]<<1|1,a[i]<<1);
				if (!c[i])
					add(a[i],b[i]+n),
					add(b[i],a[i]+n);
				else if (c[i]==1)
					add(a[i],b[i]),
					add(a[i]+n,b[i]+n),
					add(b[i],a[i]),
					add(b[i]+n,a[i]+n);
				else
					add(a[i]+n,b[i]),
					add(b[i]+n,a[i]);
			}
			Clear();
			for (int i=1;i<=(mid<<1);++i)
				if (!dfn[i]) tarjan(i);
			bool flag=0;
			for (int i=1;i<=mid;++i)
//				if (belong[i<<1]==belong[i<<1|1])
				if (belong[i]==belong[i+n])
				{
					flag=1;
					break;
				}
			if (!flag) ans=mid,l=mid+1;
			else r=mid-1;
		}
		printf("%d\n",ans);
	}
	return 0;
}

D.POJ 3207 Ikki’s Story IV - Panda’s Trick

title

POJ 3207
Description

liympanda, one of Ikki’s friend, likes playing games with Ikki. Today after minesweeping with Ikki and winning so many times, he is tired of such easy games and wants to play another game with Ikki.
liympanda has a magic circle and he puts it on a plane, there are n points on its boundary in circular border: 0, 1, 2, …, n − 1. Evil panda claims that he is connecting m pairs of points. To connect two points, liympanda either places the link entirely inside the circle or entirely outside the circle. Now liympanda tells Ikki no two links touch inside/outside the circle, except on the boundary. He wants Ikki to figure out whether this is possible…
Despaired at the minesweeping game just played, Ikki is totally at a loss, so he decides to write a program to help him.

Input

The input contains exactly one test case.
In the test case there will be a line consisting of of two integers: n and m (n ≤ 1,000, m ≤ 500). The following m lines each contain two integers ai and bi, which denote the endpoints of the ith wire. Every point will have at most one link.

Output

Output a line, either “panda is telling the truth…” or “the evil panda is lying again”.

Sample Input

4 2
0 1
3 2

Sample Output

panda is telling the truth…

Source

POJ Monthly–2007.03.04, Ikki

analysis

如果两个线段是相交的,那么两个线段同时在圆内或者圆外都是相交的。
这样就得到了约束关系,套用2-SAT的模板就行了。

code

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+10,maxm=5e5+10;
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1, ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}
int ver[maxm<<1],Next[maxm<<1],head[maxn],len;
inline void add(int x,int y)
{
	ver[++len]=y,Next[len]=head[x],head[x]=len;
}
int dfn[maxn],low[maxn],id;
int Stack[maxn],top;
int belong[maxn],tot;
bool instack[maxn];
inline void tarjan(int x)
{
	dfn[x]=low[x]=++id;
	Stack[++top]=x;
	instack[x]=1;
	for (int i=head[x];i;i=Next[i])
	{
		int y=ver[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if (instack[y])
			low[x]=min(low[x],dfn[y]);
	}
	if (low[x]==dfn[x])
	{
		int k;
		++tot;
		do
		{
			k=Stack[top--];
			belong[k]=tot;
			instack[k]=0;
		} while (k!=x);
	}
}
inline void Clear()
{
	memset(dfn,0,sizeof(dfn));
	memset(low,0,sizeof(low));
	memset(belong,0,sizeof(belong));
	memset(instack,0,sizeof(instack));
	id=tot=top=0;
}
int st[maxn],ed[maxn];
int main()
{
	int n,m;
	while (~scanf("%d %d",&n,&m))
	{
		for (int i=1;i<=m;++i)
		{
			int x,y;
			read(x);read(y);
			st[i]=min(x,y);
			ed[i]=max(x,y);
		}
		for (int i=1;i<=m;++i)
			for (int j=i+1;j<=m;++j)
				if ((st[i]>st[j] && st[i]<ed[j] && ed[i]>ed[j]) || (st[j]>st[i] && st[j]<ed[i] && ed[j]>ed[i]))
					add(i,j+m),add(j+m,i),add(j,i+m),add(i+m,j);
		Clear();
		for (int i=1;i<=(m<<1);++i)
			if (!dfn[i]) tarjan(i);
		bool flag=1;
		for (int i=1;i<=m;++i)
			if (belong[i]==belong[i+m])
			{
				flag=0;
				break;
			}
		printf(flag?"panda is telling the truth...":"the evil panda is lying again");
	}
	return 0;
}

E.POJ 2723 Get Luffy Out

title

POJ 2723
Description

Ratish is a young man who always dreams of being a hero. One day his friend Luffy was caught by Pirate Arlong. Ratish set off at once to Arlong’s island. When he got there, he found the secret place where his friend was kept, but he could not go straight in. He saw a large door in front of him and two locks in the door. Beside the large door, he found a strange rock, on which there were some odd words. The sentences were encrypted. But that was easy for Ratish, an amateur cryptographer. After decrypting all the sentences, Ratish knew the following facts:
Behind the large door, there is a nesting prison, which consists of M floors. Each floor except the deepest one has a door leading to the next floor, and there are two locks in each of these doors. Ratish can pass through a door if he opens either of the two locks in it. There are 2N different types of locks in all. The same type of locks may appear in different doors, and a door may have two locks of the same type. There is only one key that can unlock one type of lock, so there are 2N keys for all the 2N types of locks. These 2N keys were divided into N pairs, and once one key in a pair is used, the other key will disappear and never show up again.
Later, Ratish found N pairs of keys under the rock and a piece of paper recording exactly what kinds of locks are in the M doors. But Ratish doesn’t know which floor Luffy is held, so he has to open as many doors as possible. Can you help him to choose N keys to open the maximum number of doors?

Input

There are several test cases. Every test case starts with a line containing two positive integers N (1 <= N <= 210) and M (1 <= M <= 211) separated by a space, the first integer represents the number of types of keys and the second integer represents the number of doors. The 2N keys are numbered 0, 1, 2, …, 2N - 1. Each of the following N lines contains two different integers, which are the numbers of two keys in a pair. After that, each of the following M lines contains two integers, which are the numbers of two keys corresponding to the two locks in a door. You should note that the doors are given in the same order that Ratish will meet. A test case with N = M = 0 ends the input, and should not be processed.
Output
For each test case, output one line containing an integer, which is the maximum number of doors Ratish can open.

Sample Input

3 6
0 3
1 2
4 5
0 1
0 2
4 1
4 2
3 5
2 2
0 0

Sample Output

4

Source

Beijing 2005

analysis

题意:给出 n 对钥匙,每对只能挑一把使用,每把只能用一次,当一对钥匙中的一把被使用后,另一把也就不能再用了;然后给出 m 道门,每个门都有两把钥匙可以打开,问最多能开几道门(按给出的顺序开)。

矛盾关系:
1:n 对钥匙中,A 和 B 只能选择一把,用点 A 表示选择钥匙 A ,用 A’ 表示不选择(同理用点 B 和 B‘ 表示钥匙 B 的选择关系),建边(A -> B‘)表示用钥匙 A 就不能用钥匙 B ;还有(B -> A’ )表示用 B 就不能用 A。

2:m 道门,每对门都有两把钥匙可以开(假设是 C 和 D ),可能的选择是(用 C 不用 D)或者(用 D 不用 C),根据这个关系建边(D’ -> C),(C’ -> D)。

code

这道题见图时用+n+n竟然过不了,很不解。。。 &lt;()&gt; ̄へ ̄ \text{ }&lt;( ̄ ﹌  ̄)&gt;

#include<bits/stdc++.h>
using namespace std;
const int maxn=4100;
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1, ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}
int ver[maxn*3],Next[maxn*3],head[maxn],len;
inline void add(int x,int y)
{
	ver[++len]=y,Next[len]=head[x],head[x]=len;
}
int dfn[maxn],low[maxn],id;
int Stack[maxn],top;
int belong[maxn],tot;
bool instack[maxn];
inline void tarjan(int x)
{
	dfn[x]=low[x]=++id;
	Stack[++top]=x;
	instack[x]=1;
	for (int i=head[x];i;i=Next[i])
	{
		int y=ver[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if (instack[y])
			low[x]=min(low[x],dfn[y]);
	}
	if (low[x]==dfn[x])
	{
		int k;
		++tot;
		do
		{
			k=Stack[top--];
			belong[k]=tot;
			instack[k]=0;
		} while (k!=x);
	}
}
inline void Clear()
{
	memset(dfn,0,sizeof(dfn));
	memset(low,0,sizeof(low));
	memset(belong,0,sizeof(belong));
	memset(instack,0,sizeof(instack));
	id=tot=top=0;
}
int x[maxn],y[maxn],a[2][maxn];
int main()
{
	int n,m;
	while (~scanf("%d %d",&n,&m)&&(n+m))
	{
		for (int i=1;i<=n;++i)
			read(x[i]),read(y[i]);
		for (int i=1;i<=m;++i)
			read(a[0][i]),read(a[1][i]);
		int l=0,r=m,ans=0;
		while (l<=r)
		{
			memset(head,0,sizeof(head));
			len=0;
			for (int i=1;i<=n;++i)
				add(x[i]<<1,y[i]<<1|1),
				add(y[i]<<1,x[i]<<1|1);
			int mid=(l+r)>>1;
			for (int i=1;i<=mid;++i)
				add(a[0][i]<<1|1,a[1][i]<<1),
				add(a[1][i]<<1|1,a[0][i]<<1);
			Clear();
			for (int i=1;i<=(n<<2);++i)
				if (!dfn[i]) tarjan(i);
			bool flag=1;
			for (int i=1;i<=(n<<1);++i)
				if (belong[i<<1]==belong[i<<1|1])
				{
					flag=0;
					break;
				}
			if (flag) ans=mid,l=mid+1;
			else r=mid-1;
		}
		printf("%d\n",ans);
	}
	return 0;
}

F.POJ 3648 Wedding

title

POJ 3648
之所以没有像原来那样提供Ch的地址,是因为我不管怎么写,在Ch上都会WA。。。。
Description

Up to thirty couples will attend a wedding feast, at which they will be seated on either side of a long table. The bride and groom sit at one end, opposite each other, and the bride wears an elaborate headdress that keeps her from seeing people on the same side as her. It is considered bad luck to have a husband and wife seated on the same side of the table. Additionally, there are several pairs of people conducting adulterous relationships (both different-sex and same-sex relationships are possible), and it is bad luck for the bride to see both members of such a pair. Your job is to arrange people at the table so as to avoid any bad luck.

Input

The input consists of a number of test cases, followed by a line containing 0 0. Each test case gives n, the number of couples, followed by the number of adulterous pairs, followed by the pairs, in the form “4h 2w” (husband from couple 4, wife from couple 2), or “10w 4w”, or “3h 1h”. Couples are numbered from 0 to n - 1 with the bride and groom being 0w and 0h.

Output

For each case, output a single line containing a list of the people that should be seated on the same side as the bride. If there are several solutions, any one will do. If there is no solution, output a line containing “bad luck”.

Sample Input

10 6
3h 7h
5w 3w
7h 6w
8w 3w
7h 3w
2w 5h
0 0

Sample Output

1h 2h 3w 4h 5h 6h 7h 8h 9h

Source

Waterloo Local Contest, 2007.9.29

analysis

这道题的解决部分还必须写一个work()work()函数,以此在判断结果为bad luck“bad\text{ }luck”后,返回,否则,写在主函数里,不管是continuecontinue还是exit(0)exit(0),都会WAWA。哎,这是我提交了14遍得出的结论。
就是这个。

if (belong[i]==belong[i+n])
{
	puts("bad luck");
	exit(0); or continue;//都会WA。
}

所以还是这样写比较好。

inline void work()
{
.....................................//自己想想前面怎么写。
	if (belong[i]==belong[i+n])
	{
		puts("bad luck");
		return ;
	}
.....................................//还有后面怎么写
}

但是,这真的是一道比较板子性质的2SAT2-SAT问题,只不过没想到这么坑!

code

#include<bits/stdc++.h>
using namespace std;
const int maxn=62,maxm=3605;
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1, ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}
int ver[maxm],Next[maxm],head[maxn],len;
inline void add(int x,int y)
{
	ver[++len]=y,Next[len]=head[x],head[x]=len;
}
int vc[maxm],Nc[maxm],hc[maxn],lc;
inline void addc(int x,int y)
{
	vc[++lc]=y,Nc[lc]=hc[x],hc[x]=lc;
}
int dfn[maxn],low[maxn],id;
int Stack[maxn],top;
int belong[maxn],tot;
bool instack[maxn];
inline void tarjan(int x)
{
	dfn[x]=low[x]=++id;
	Stack[++top]=x;
	instack[x]=1;
	for (int i=head[x];i;i=Next[i])
	{
		int y=ver[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if (instack[y])
			low[x]=min(low[x],dfn[y]);
	}
	if (low[x]==dfn[x])
	{
		int k;
		++tot;
		do
		{
			k=Stack[top--];
			belong[k]=tot;
			instack[k]=0;
		} while (k!=x);
	}
}
int val[maxn],deg[maxn],opp[maxn];
inline void topsort()
{
	queue<int>q;
	for (int i=1;i<=tot;++i)
		if (!deg[i]) q.push(i);
	while (!q.empty())
	{
		int x=q.front();
		q.pop();
		if (!val[x]) val[x]=1,val[opp[x]]=-1;
		for (int i=hc[x];i;i=Nc[i])
		{
			int y=vc[i];
			if (!--deg[y]) q.push(y);
		}
	}
}
int n,m;
inline void work()
{
	len=lc=id=top=tot=0;
	for (int i=1;i<=(n<<1);++i)
		head[i]=hc[i]=dfn[i]=instack[i]=deg[i]=val[i]=0;
	for (int i=1;i<=m;++i)
	{
		int a,c;char b,d;
		scanf("%d%c %d%c",&a,&b,&c,&d);
		if (!a) a=n;
		if (!c) c=n;
		if (b=='h'&&d=='h') add(a,c+n),add(c,a+n);
		if (b=='h'&&d=='w') add(a,c),add(c+n,a+n);
		if (b=='w'&&d=='h') add(a+n,c+n),add(c,a);
		if (b=='w'&&d=='w') add(a+n,c),add(c+n,a);
	}
	add(n<<1,n);
	for (int i=1;i<=(n<<1);++i)
		if (!dfn[i]) tarjan(i);
	for (int i=1;i<=n;++i)
	{
		if (belong[i]==belong[i+n])
		{
			puts("bad luck");
			return ;
		}
		opp[belong[i]]=belong[i+n];
		opp[belong[i+n]]=belong[i];
	}
	for (int x=1;x<=(n<<1);++x)
		for (int i=head[x];i;i=Next[i])
		{
			int y=ver[i];
			if (belong[y]!=belong[x])
				addc(belong[y],belong[x]),++deg[belong[x]];
		}
	topsort();
	for (int i=1;i<n;++i)
		if (val[belong[i]]==-1) printf("%dh ",i);
		else printf("%dw ",i);
	puts("");
}
int main()
{
	while (~scanf("%d %d",&n,&m)&&(n+m)) work();
	return 0;
}

G.POJ 2749 Building roads

title

POJ 2749
Description

Farmer John’s farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that’s the best choice for the cows.
Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don’t spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.
That’s not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can’t connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.
We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.
Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

Input

The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.
Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.
Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.
Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.
The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.
You should note that all the coordinates are in the range [-1000000, 1000000].

Output

You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.

Sample Input

4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3

Sample Output

53246
Source
POJ Monthly–2006.01.22,zhucheng

analysis

题意是说有 N 个牛栏,现在通过一条通道(s1,s2)把他们连起来,他们之间有一些约束关系,一些牛栏不能连在同一个点,一些牛栏必须连在同一个点,现在问有没有可能把他们都连好,而且满足所有的约束关系,如果可以,输出两个牛栏之间距离最大值的最小情况。

比如牛栏 A 连在 s1 点,牛栏 B 连在 s2 点,那么AB之间的距离为(As1 + s1s2 + s2B);也可以两个牛栏连在同一个点上,比如 A 连在 s1 ,B 也连在 s1 ,那么AB的距离是(As1 + Bs1)。

A 表示连在s1,A‘ 表示连在 s2 ,按照给出的约束关系建边,然后在区间内2分枚举所有可能的解 ans,如果当前解满足条件,那么就意味着 ans 还可以更小,如果不满足,说明当前的 ans 值过大。

warning

在这里插入图片描述

code

#include<bits/stdc++.h>
using namespace std;
const int maxn=5010,maxm=8e5+10;
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1, ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}
struct point
{
	int x,y;
}p[maxn],s1,s2;
inline int dist(point a,point b)
{
	return abs(a.x-b.x)+abs(a.y-b.y);
}
int ver[maxm],Next[maxm],head[maxn],len;
inline void add(int x,int y)
{
	ver[++len]=y,Next[len]=head[x],head[x]=len;
}
int dfn[maxn],low[maxn],id;
int Stack[maxn],top;
int belong[maxn],tot;
bool instack[maxn];
inline void tarjan(int x)
{
	dfn[x]=low[x]=++id;
	Stack[++top]=x;
	instack[x]=1;
	for (int i=head[x];i;i=Next[i])
	{
		int y=ver[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if (instack[y])
			low[x]=min(low[x],dfn[y]);
	}
	if (low[x]==dfn[x])
	{
		int k;
		++tot;
		do
		{
			k=Stack[top--];
			belong[k]=tot;
			instack[k]=0;
		} while (k!=x);
	}
}
inline void Clear()
{
	memset(dfn,0,sizeof(dfn));
	memset(low,0,sizeof(low));
	memset(belong,0,sizeof(belong));
	memset(instack,0,sizeof(instack));
	id=tot=top=0;
}
int hate[maxn][2],like[maxn][2];
int main()
{
	int n,A,B;
	while (~scanf("%d %d %d",&n,&A,&B))
	{
		read(s1.x),read(s1.y),read(s2.x),read(s2.y);
		int length=dist(s1,s2);
		int maxum=INT_MIN,minum=INT_MAX;
		for (int i=1;i<=n;++i)
		{
			read(p[i].x),read(p[i].y);
			minum=min(minum,min(dist(p[i],s1),dist(p[i],s2)));
			maxum=max(maxum,max(dist(p[i],s1),dist(p[i],s2)));
		}
		for (int i=1;i<=A;++i)
			read(hate[i][0]),read(hate[i][1]);
		for (int i=1;i<=B;++i)
			read(like[i][0]),read(like[i][1]);
		int l=minum<<1,r=(maxum<<1)+length,ans=INT_MAX;
		while (l<=r)
		{
			memset(head,0,sizeof(head));
			len=0;
			for (int i=1;i<=A;++i)
			{
				add(hate[i][0],hate[i][1]+n),add(hate[i][1],hate[i][0]+n);
				add(hate[i][0]+n,hate[i][1]),add(hate[i][1]+n,hate[i][0]);
			}
			for (int i=1;i<=B;++i)
			{
				add(like[i][0],like[i][1]),add(like[i][0]+n,like[i][1]+n);
				add(like[i][1],like[i][0]),add(like[i][1]+n,like[i][0]+n);
			}
			int mid=(l+r)>>1;
			for (int i=1;i<=n;++i)
				for (int j=i+1;j<=n;++j)
					if (i!=j)
					{
						if (dist(p[i],s1)+dist(s1,p[j])>mid) add(i,j+n),add(j,i+n);
						if (dist(p[i],s2)+dist(s2,p[j])>mid) add(i+n,j),add(j+n,i);
						if (dist(p[i],s1)+length+dist(s2,p[j])>mid) add(i,j),add(j+n,i+n);
						if (dist(p[i],s2)+length+dist(s1,p[j])>mid) add(j,i),add(i+n,j+n);
					}
			Clear();
			for (int i=1;i<=(n<<1);++i)
				if (!dfn[i]) tarjan(i);
			bool flag=1;
			for (int i=1;i<=n;++i)
				if (belong[i]==belong[i+n])
				{
					flag=0;
					break;
				}
			if (flag) ans=min(ans,mid),r=mid-1;
			else l=mid+1;
		}
		printf("%d\n",ans<INT_MAX?ans:-1);
	}
	return 0;
}

H.POJ 3683 Priest John’s Busiest Day

title

POJ 3683
CH POJ3683
Description

John is the only priest in his town. September 1st is the John’s busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.
Note that John can not be present at two weddings simultaneously.

Input

The first line contains a integer N ( 1 ≤ N ≤ 1000).
The next N lines contain the Si, Ti and Di. Si and Ti are in the format of hh:mm.

Output

The first line of output contains “YES” or “NO” indicating whether John can be present at every special ceremony. If it is “YES”, output another N lines describing the staring time and finishing time of all the ceremonies.

Sample Input

2
08:00 09:00 30
08:15 09:00 20

Sample Output

YES
08:00 08:30
08:40 09:00

Source

POJ Founder Monthly Contest – 2008.08.31, Dagger and Facer

analysis

xi&lt;=&gt;x_{i}为真 &lt;=&gt; 在开始时举行仪式,
xj&lt;=&gt;x_{j}为假 &lt;=&gt; 在结束时举行仪式。
xxxx设x&#x27; 为 非x。(若 x 为真,则 x&#x27; 为假)
xi&gt;xjxixj(xixj)x_{i} -&gt; xj 表示 xi 为真则 xj 为真。(xi xj 连边)

ijSi Si+DiSj Sj+Djxiorxjxi&gt;xjxj&gt;xixixjxixjxj对于结婚仪式 i 和 j ,如果 Si ~ Si+Di 和 Sj ~ Sj+Dj 冲突,就有 x_{i}&#x27; or xj&#x27; ,这种情况即 x_{i} -&gt; xj&#x27; ,xj -&gt; x_{i}&#x27; 。(x_{i} 和 xj 不能同时选,即选择一个,那么选了 x_{i} 后 就会选择到 xj&#x27; ,表示不选 xj。)
SiSi+DiTjDjDjxiorxjxi&gt;xjxj&gt;xi如果 Si \sim Si+Di 和 Tj-Dj \sim Dj 冲突,有 xi&#x27; or xj ,即 x_{i} -&gt; xj,xj&#x27; -&gt; x_{i}&#x27; 。
TiDiTiSjSj+Djxiorxjxi&gt;xjxj&gt;xi如果 Ti-Di \sim Ti 和 Sj \sim Sj+Dj 冲突,有 xi or xj&#x27; ,即 x_{i}&#x27; -&gt; xj&#x27;,xj -&gt; x_{i} 。
TiDiTiTjDjDjxiorxjxi&gt;xjxj&gt;xi如果 Ti-Di \sim Ti 和 Tj-Dj \sim Dj 冲突 ,有 xi or xj ,即 x_{i}&#x27; -&gt; xj ,xj&#x27; -&gt; x_{i} 。

code

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e3+10,maxm=3e6+10;
template<typename T>inline void read(T &x)
{
	x=0;
	T f=1,ch=getchar();
	while (!isdigit(ch) && ch^'-') ch=getchar();
	if (ch=='-') f=-1, ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
	x*=f;
}
int ver[maxm],Next[maxm],head[maxn],len;
inline void add(int x,int y)
{
	ver[++len]=y,Next[len]=head[x],head[x]=len;
}
inline bool Wrong(int a,int b,int c,int d)
{
	if (a>=c&&a<d || b>c&&b<=d || a<=c&&b>=d)//
		return true;
	else
		return false;
}
int dfn[maxn],low[maxn],id;
int Stack[maxn],top;
bool instack[maxn];
int belong[maxn],tot;
inline void tarjan(int x)
{
	dfn[x]=low[x]=++id;
	Stack[++top]=x;
	instack[x]=1;
	for (int i=head[x];i;i=Next[i])
	{
		int y=ver[i];
		if (!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if (instack[y])
			low[x]=min(low[x],dfn[y]);
	}
	if (low[x]==dfn[x])
	{
		int k;
		++tot;
		do
		{
			k=Stack[top--];
			belong[k]=tot;
			instack[k]=0;
		} while (k!=x);
	}
}
int opp[maxn];
bool val[maxn];
int S[maxn],T[maxn],D[maxn];
int main()
{
	int n;read(n);
	for (int i=1;i<=n;++i)
    {
        int a,b,c,d;
        scanf("%d:%d %d:%d %d",&a,&b,&c,&d,&D[i]);//这里都把时间转化为分钟来计算
        S[i]=a*60+b;//计算开头的时间
        T[i]=c*60+d;//计算结尾的时间
    }
    for (int i=1;i<n;++i)
		for (int j=i+1;j<=n;++j)
		{
			if (Wrong(S[i],S[i]+D[i],S[j],S[j]+D[j])) add(i,j+n),add(j,i+n);
			if (Wrong(S[i],S[i]+D[i],T[j]-D[j],T[j])) add(i,j),add(j+n,i+n);
			if (Wrong(T[i]-D[i],T[i],S[j],S[j]+D[j])) add(i+n,j+n),add(j,i);
			if (Wrong(T[i]-D[i],T[i],T[j]-D[j],T[j])) add(i+n,j),add(j+n,i);
		}
	for (int i=1;i<=(n<<1);++i)
		if (!dfn[i]) tarjan(i);
	for (int i=1;i<=n;++i)
	{
		if (belong[i]==belong[i+n])
		{
			puts("NO");
			exit(0);
		}
		opp[i]=i+n,opp[i+n]=i;
	}
	puts("YES");
	for (int i=1;i<=(n<<1);++i)
		val[i]=belong[i]>belong[opp[i]];//
	for (int i=1;i<=n;++i)
		if (!val[i])
			printf("%02d:%02d %02d:%02d\n",S[i]/60,S[i]%60,(S[i]+D[i])/60,(S[i]+D[i])%60);
		else
			printf("%02d:%02d %02d:%02d\n",(T[i]-D[i])/60,(T[i]-D[i])%60,T[i]/60,T[i]%60);
	return 0;
}

  1. 有些analysis来自laoda扯一扯 ↩︎

展开阅读全文

一道很有趣的题

07-07

题目:假设是原始社会,有石头,2块石头互磨可以变成石刀,石刀可以去砍木头,木头被砍成木材,木材可以组成椅子,请你用oo的 思想把这些事物和他们之间的关系表达出来,但是要考虑到以后可能我会增加以下几点: "1.有可能我还想让石刀去砍椅子,把椅子砍成木材,2.可能我还想让石头增加关系,例如互相砸,互相摔,而不只是磨,也可以变 成石刀,3也许我又要多添一百种不同的事物,再多添120种不同的关系... " 也就是说我的要求可能是不断变化的,所以你要怎么样设计这个oo的模型,可以让我在实行1,2,3条的时候只做最小的修改.... rnrn原来CSDN上有这个贴子,我在他们的基础上修改了一些,TX们有没有更完美的解决方案呢?rnrn以下是我的理解:rnpackage 原始社会rnrnabstract class 抽象石头 rn abstract 相砸(另一个石头) rn abstract 相摔(另一个石头) rn abstract 相磨(另一个石头) rnrnrnabstract class 抽象石刀 extends 抽象石头 rn abstract 砍(木头)rn abstract 砍(椅子) rn rnrnclass 石头 extends 抽象石头rn 相砸(另一个石头)...... rn 相摔(另一个石头)...... rn 相磨(另一个石头)...... rn rnrnrnclass 石刀 extends 抽象石刀rn 石刀 (石头1,石头2)...... rn 砍(木头)......rn 砍(椅子)...... rnrnrnclass 木头rnrnrnclass 木材 extends 木头rn 木材(石刀,木头)rn 石刀.砍(木头);rn ......rn rn 木材(石刀,椅子)rn 石刀.砍(椅子);rn ......rn rnrnrnrnclass 椅子 extends 木材 rn 椅子 (木材1,木材2...)......rnrnrn rnrn 论坛

发现一个很有趣的设计模式~很好玩~

12-28

本来我是想完成一个占位符(placeholder)字符串处理功能实现!之前我发过帖子求助,后来发现真笨,用String的replace方法就可以实现的。rnrn帖子在此:rn[url=http://topic.csdn.net/u/20111227/20/f4e4f380-069e-4d34-be66-175f82a5c1f9.html][/url]rnrn首先,我设计了一个类—信息包裹(MessageBundle),但由于信息包裹内的信息大部分都是带有占位符的字符串!rn程序响应给外部系统时,就必需把这些占位符替换成程序运行时的值。rn例如:rn要查找与含词“FindMe”的相匹配用户rnrn信息包裹内的字符串:rn没有发现与[$username]相匹配的用户!rnrn那么程序运行时给外部系统的信息提示可能为rn“没有发现与[FindMe]相匹配的用户!”rnrn一开始我就设想,新建个类SentenceForm及为其创建方法rn[code=Java]rnvoid replaceVariableWith(String theVaribaleName,String theVariableValue)rn[/code]rnrn不就得了。调用此方法的风格就形如这样:rn[code=Java]rnsentenceForm.replaceVariableWith("username","FindMe");rn[/code]rnrn但我想了想,如果是我,当然知道这语句是什么意思。但别人有时会出现混淆(当然机率可能很小),读者看代码时,此代码含义是:rn[color=#FF0000]sentenceForm replace variable "username" with "FindMe"[/color]rn还是(在没有看方法签名的情况下,反正我看着上面的调用风格有点不是味道)rn[color=#FF0000]sentenceForm replace variable with ("username","FindMe")[/color]rn意思把变量"username"的名字改一个新名字"FindMe"。或者还是其它什么意思啦。rnrn于是我就想调用此方法的风格要是这样就好了rnrnsentenceForm.replace("username").with("FindMe")rnrn这样应该不会有误解了吧!rnrn如是就有了最终的代码:rnrn[code=Java]rnpackage com.dongantech.eshop.web.util;rnrnpublic class SentenceForm rn private String sentenceForm = null ;rn private String replacedVariableName = "" ;rn rn public void setSentenceForm(String theSentenceForm)rn sentenceForm = theSentenceForm;rn rn public String getSentenceForm()rn return sentenceForm;rn rn public SentenceForm replaceVariable(String theVariableName)rn replacedVariableName = theVariableName ;rn return this ;rn rn public SentenceForm with(String theValue)rn String replacedVariable = "$"+replacedVariableName+"";rn sentenceForm.replace(replacedVariable,theValue) ;rn return this ;rn rnrn[/code]rnrn当然,这只是链式调用的另外一种用途。但我想分享一下自己的心得。。。仅此而已! 论坛

没有更多推荐了,返回首页