首先,在最上面放进去
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
其次,网络进入device
net.to(device)
最后,数据进入device
inputs, labels =
本文介绍了如何在PyTorch中使用CUDA进行深度学习训练。内容包括将模型和数据迁移到GPU设备,以及解决在验证过程中遇到的错误。关键在于确保所有计算都在GPU上进行,或者全部在CPU上,保持一致性。
首先,在最上面放进去
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
其次,网络进入device
net.to(device)
最后,数据进入device
inputs, labels =
2870
5560

被折叠的 条评论
为什么被折叠?