数学符号大全

1、几何符号

  ⊥   ∥   ∠   ⌒   ⊙   ≡   ≌    △

2、代数符号

  ∝   ∧   ∨   ~   ∫   ≠    ≤   ≥   ≈   ∞   ∶

3、运算符号

  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。

4、集合符号

  ∪   ∩   ∈

5、特殊符号

  ∑    π(圆周率)

6、推理符号

  |a|    ⊥    ∽    △    ∠    ∩    ∪    ≠    ≡    ±    ≥    ≤    ∈    ←

  ↑    →    ↓    ↖    ↗    ↘    ↙    ∥    ∧    ∨

  &;   §

  ①   ②   ③   ④   ⑤   ⑥   ⑦   ⑧   ⑨   ⑩

  Γ    Δ    Θ     Λ    Ξ    Ο    Π     Σ    Φ     Χ    Ψ    Ω

  α    β    γ    δ    ε    ζ    η    θ    ι    κ    λ    μ     ν

  ξ    ο    π    ρ    σ    τ    υ    φ    χ    ψ    ω

  Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ

  ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ

  ∈   ∏   ∑   ∕   √   ∝   ∞   ∟ ∠    ∣   ∥   ∧   ∨   ∩   ∪   ∫   ∮

  ∴   ∵   ∶   ∷   ∽   ≈   ≌   ≒   ≠   ≡   ≤   ≥   ≦   ≧    ≮   ≯   ⊕   ⊙    ⊥

  ⊿   ⌒     ℃

  指数0123:o123

7、数量符号

  如:i,2+i,a,x,自然对数底e,圆周率π。

8、关系符号

    “=”是等号                                                   “≈”是近似符号

    “≠”是不等号                                                 “>”是大于符号,

    “<”是小于符号                                             “≥”是大于或等于符号(也可写作“≮”)

    “∈”是属于符号                                             “⊆ ⊂ ⊇ ⊃”是“包含”符号等。

    “∽”是相似符号                                              “≌”是全等号

     “∥”是平行符号                                             “⊥”是垂直符号

    “≤”是小于或等于符号(也可写作“≯”)“→ ”表示变量变化的趋势

    “∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)

9、结合符号

  如小括号“()”中括号“[]”,大括号“{}”横线“—”

10、性质符号

  如正号“+”,负号“-”,绝对值符号“| |”正负号“±”

11、省略符号

  如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),

  ∵因为,(一个脚站着的,站不住)

  ∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

12、排列组合符号

  C-组合数

  A-排列数

  N-元素的总个数

  R-参与选择的元素个数

  !-阶乘 ,如5!=5×4×3×2×1=120

  C-Combination- 组合

  A-Arrangement-排列

13、离散数学符号

  ├ 断定符(公式在L中可证)

  ╞ 满足符(公式在E上有效,公式在E上可满足)

  ┐ 命题的“非”运算

  ∧ 命题的“合取”(“与”)运算

  ∨ 命题的“析取”(“或”,“可兼或”)运算

  → 命题的“条件”运算

  A<=>B 命题A 与B 等价关系

  A=>B 命题 A与 B的蕴涵关系

  A* 公式A 的对偶公式

  wff 合式公式

  iff 当且仅当

  ↑ 命题的“与非” 运算( “与非门” )

  ↓ 命题的“或非”运算( “或非门” )

  □ 模态词“必然”

  ◇ 模态词“可能”

  φ 空集

  ∈ 属于(??不属于)

  P(A) 集合A的幂集

  |A| 集合A的点数

  R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”

  (或下面加 ≠) 真包含

  ∪ 集合的并运算

  ∩ 集合的交运算

  - (~) 集合的差运算

  〡 限制

  [X](右下角R) 集合关于关系R的等价类

  A/ R 集合A上关于R的商集

  [a] 元素a 产生的循环群

  I (i大写) 环,理想

  Z/(n) 模n的同余类集合

  r(R) 关系 R的自反闭包

  s(R) 关系 的对称闭包

  CP 命题演绎的定理(CP 规则)

  EG 存在推广规则(存在量词引入规则)

  ES 存在量词特指规则(存在量词消去规则)

  UG 全称推广规则(全称量词引入规则)

  US 全称特指规则(全称量词消去规则)

  R 关系

  r 相容关系

  R○S 关系 与关系 的复合

  domf 函数 的定义域(前域)

  ranf 函数 的值域

  f:X→Y f是X到Y的函数

  GCD(x,y) x,y最大公约数

  LCM(x,y) x,y最小公倍数

  aH(Ha) H 关于a的左(右)陪集

  Ker(f) 同态映射f的核(或称 f同态核)

  [1,n] 1到n的整数集合

  d(u,v) 点u与点v间的距离

  d(v) 点v的度数

  G=(V,E) 点集为V,边集为E的图

  W(G) 图G的连通分支数

  k(G) 图G的点连通度

  △(G) 图G的最大点度

  A(G) 图G的邻接矩阵

  P(G) 图G的可达矩阵

  M(G) 图G的关联矩阵

  C 复数集

  N 自然数集(包含0在内)

  N* 正自然数集

  P 素数集

  Q 有理数集

  R 实数集

  Z 整数集

  Set 集范畴

  Top 拓扑空间范畴

  Ab 交换群范畴

  Grp 群范畴

  Mon 单元半群范畴

  Ring 有单位元的(结合)环范畴

  Rng 环范畴

  CRng 交换环范畴

  R-mod 环R的左模范畴

  mod-R 环R的右模范畴

  Field 域范畴

  Poset 偏序集范畴

### 回答1: LaTeX是一种用于排版技术文档、学术论文的工具,通过它可以排版复杂的数学公式和符号。在LaTeX中,使用数学模式可以输入各种符号。以下是一些常见的数学符号大全: 1. 希腊字母:$\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\kappa,\lambda,\mu,\nu,\xi,\pi,\rho,\sigma,\tau,\phi,\chi,\psi,\omega$ 2. 公式符号:$+, -, \times, \div, \pm, \mp, \cdot, \neq, \sim, \equiv, \propto, \infty$ 3. 关系符号:$<, >, \leq, \geq, \subset, \subseteq, \supset, \supseteq, \approx, \sim, \cong$ 4. 括号:$(, ), [, ], \{, \}$ 5. 矢量:$\vec{a}, \vec{b}, \vec{c}, \vec{d}$ 6. 箭头:$\rightarrow, \leftarrow, \leftrightarrow, \Longrightarrow, \Longleftarrow, \longleftrightarrow$ 7. 积分、求和:$\int, \oint, \iint, \iiint, \sum, \prod$ 8. 特殊符号:$\forall, \exists, \nabla, \partial, \aleph, \Im, \Re, \Im, \wp, \bot, \top$ 以上是LaTeX中常见的数学符号大全,使用它们可以轻松地排版复杂的数学公式。但是需要注意的是,符号的输入要按照一定的格式,避免出现错误。因此,学习LaTeX需要一定的时间和耐心,但是它是一种十分有用的工具,对于从事科学研究的人来说尤其如此。 ### 回答2: LaTeX是一种排版软件,可以用来制作各种文档,包括数学公式和符号。在学术界和科研领域,使用LaTeX排版数学公式和符号非常普遍。因此,掌握一定的LaTeX数学符号是非常重要的。 首先,我们需要使用一个宏包“amsmath”,这个宏包提供了一些LaTeX数学符号,比如下面这些: 1.数学字母:$\mathbb{A}$、$\mathbb{B}$、$\mathbb{C}$、$\mathbb{D}$、$\mathbb{E}$等等。 2.上下角标:使用“\_”来示下标,使用“\^{}”来示上标,比如$x\_1$示x下标1,$x^2$示x的平方。 3.集合符号:$\cap$,$\cup$,$\in$,$\notin$,$\subseteq$,$\supseteq$等等。 4.希腊字母:$\alpha$、$\beta$、$\gamma$、$\delta$、$\epsilon$等等。 5.积分符号:$\int$、$\oint$,可以通过添加上下限来示不同的积分形式,比如$\int_{0}^{1}f(x)dx$。 6.矩阵符号:$\begin{matrix}1 & 2 \\ 3 & 4\end{matrix}$,$\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix}$,$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$,$\begin{vmatrix}1 & 2 \\ 3 & 4\end{vmatrix}$等等。 7.箭头符号:$\rightarrow$,$\leftarrow$,$\leftrightarrow$等等。 此外,还有很多其他的数学符号。在使用LaTeX排版数学公式的过程中,可以参考一些相关的LaTeX数学符号手册,比如“detexify”,通过手写符号来查找相应的LaTeX符号命令。另外,也可以在一些在线LaTeX编辑器的数学符号库中查找相应的LaTeX数学符号。掌握一定的LaTeX数学符号,可以让我们更方便、更快速地排版数学公式和符号,提高工作和学习效率。 ### 回答3: LaTeX是一种专业的排版工具,广泛应用于学术领域和科技行业。其中最为常用的应该就是数学符号了。在LaTeX中,数学符号有着丰富的用法和分类,下面我们就通过具体的例子来了解LaTeX数学符号大全: 1. 代数符号:$+$,$-$,$\times$,$\div$,$=$,$\neq$,$\approx$,$\equiv$,$\forall$,$\exists$,$\in$,$\notin$,$\subset$,$\subseteq$,$\cup$,$\cap$,$\setminus$等。 2. 字母:在数学公式中,字母通常用于示变量,符号等。其中大写和小写字母均可用,在LaTeX中,可以使用`\alpha`,`\beta`,`\gamma`等字符。 3. 希腊字母:希腊字母是数学中最常用的符号之一。其中,常用的希腊字母包括:`$\alpha$`,`$\beta$`,`$\gamma$`,`$\delta$`,`$\epsilon$`,`$\theta$`,`$\lambda$`,`$\mu$`,`$\phi$`,`$\pi$`,`$\sigma$`,`$\omega$`等。 4. 箭头符号:在很多数学问题中,箭头符号通常用于示方向或转移。其中,常用的箭头符号包括:`$\rightarrow$`,`$\Rightarrow$`,`$\leftrightarrow$`,`$\uparrow$`,`$\downarrow$`,`$\leftarrow$`等。 5. 括号:数学中经常会用到各种括号,如小括号,中括号,大括号等。常用的括号符号包括:`$($`,`$)$`,`$[$`,`$]$`,`$\{$`,`$\}$`等。 6. 上下标:数学中,上下标用于示变量的指数、下标等。在LaTeX中,可以使用`^`示上标,`_`示下标。示例代码如下: ```math a^2 + b^2 = c^2 ``` 7. 分数:分数在数学中十分常见,可以用`$\frac{分子}{分母}$` 示。示例代码如下: ```math \frac{1}{2} + \frac{1}{4} = \frac{3}{4} ``` 8. 微积分符号:微积分符号在科学和工程中用途广泛。其中,常用的微积分符号包括:`$\int$`,`$\sum$`,`$\prod$`,`$\nabla$`,`$\oint$`等。 总结:本文介绍了LaTeX数学符号大全,涵盖了代数符号、字母、希腊字母、箭头符号、括号、上下标、分数和微积分符号等主要内容。这些符号的应用范围十分广泛,掌握这些符号的用法将有助于让LaTeX排版更加方便和快捷。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值