LLM大语言模型(十六):最新开源 GLM4-9B 本地部署,带不动,根本带不动 GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B及其人类偏好对齐的版本GLM-4-9B-Chat均表现出超越 Llama-3-8B 的卓越性能。
Llama(二):Open WebUI作为前端界面,使用本机的llama3 Open WebUI是一个可扩展、功能丰富、用户友好的自托管WebUI,旨在完全离线操作。它支持各种LLM运行程序,包括Ollama和OpenAI兼容的API。
RAG概述(二):Advanced RAG 高级RAG Native RAG(基础RAG)体现了RAG开发范式的骨架,也即三段论Indexing-Retrieval-Generation。Advanced RAG聚焦在检索增强,增加了Pre-Retrieval预检索和Post-Retrieval后检索阶段。
RAG概述(一):RAG架构的演进 RAG:Retrieval-Augmented Generation 检索增强生成。RAG通过结合LLMs的内在知识和外部数据库的非参数化数据,提高了模型在知识密集型任务中的准确性和可信度。。RAG的发展经历了三个主要阶段:初级(Native RAG)、高级(Advanced RAG)和模块化RAG(Modular RAG)。
LLM大语言模型(十五):LangChain的Agent中使用自定义的ChatGLM,且底层调用的是remote的ChatGLM3-6B的HTTP服务 本文搭建了一个完整的LangChain的Agent,调用本地启动的ChatGLM3-6B的HTTP server。为后续的RAG做好了准备。
LLM大语言模型(十三):ChatGLM3-6B兼容Langchain的Function Call的一步一步的详细转换过程记录 ChatGLM3-6B兼容Langchain的Function Call的一步一步的详细转换过程记录
LLM大语言模型(十一):基于自定义的ChatGLM3-6B构建LangChain的chain Chain是静态的是提前定义好的执行流程,执行完step1然后执行step2.Agent是动态的,Agent在执行时LLM可以自行决定使用合适的step(tool)。
LLM大语言模型(十):LangChain自定义Agent使用自定义的LLM 独立部署ChatGLM3-6B并提供HTTP API能力。自定义LLM封装对ChatGLM3-6B的访问。创建一个简单的Agent来使用自定义的LLM。
LLM大语言模型(九):LangChain封装自定义的LLM 想基于ChatGLM3-6B用LangChain做LLM应用,需要先了解下LangChain中对LLM的封装。本文以一个hello world的封装来示例。
LLM大语言模型(八):ChatGLM3-6B使用的tokenizer模型BAAI/bge-large-zh-v1.5 BGE embedding系列模型是由智源研究院研发的中文版文本表示模型。可将任意文本映射为低维稠密向量,以用于检索、分类、聚类或语义匹配等任务,并可支持为大模型调用外部知识。
LLM资料:中文embedding库 理解LLM,就要理解Transformer,但其实最基础的还是要从词的embedding讲起。毕竟计算机能处理的只有数字,所以万事开头的第一步就是将要处理的任务转换为数字。
ChatGLM3-6B独立部署提供HTTP服务failed to open nvrtc-builtins64_121.dll RuntimeError: nvrtc: error: failed to open nvrtc-builtins64_121.dll. Make sure that nvrtc-builtins64_121.dll is installed correctly.