
EM算法与变分推断
通常而言,机器学习中需要解决的问题是由观察到的变量xxx来估计隐变量zzz的分布以及参数θ\thetaθ,也就是求解p(z∣x,θ)p(z|x,\theta)p(z∣x,θ)以及 θ\thetaθ用公式来表达,变量集合xxx的联合分布为p(x∣θ)=∏i=1N∫zp(xi,z∣θ)dzp(x|\theta)=\prod_{i=1}^N\int_zp(x_i,z|\theta)dzp(x∣θ)=i=1∏N∫zp(xi,z∣θ)dz则其对应的对数似然函数就为lnp(x∣θ)=ln∏i=1Np(xi
























