1、题目描述
2、解决思路
二叉搜索树的特性,二叉树的左子树不为空,则左子树上所有节点的值均小于它的根节点的值; 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;它的左右子树也为二叉搜索树。
2-1、【递归】
class Solution {
public boolean isValidBST(TreeNode root) {
return vaildDFS(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
private boolean vaildDFS(TreeNode root,long lower,long upper){
if(root == null) return true;
if(root.val <= lower || root.val >= upper)
return false;
return vaildDFS(root.left,lower,root.val) && vaildDFS(root.right,root.val,upper);
}
}
复杂度分析
时间复杂度:O(n),其中 n 为二叉树的节点个数。在递归调用的时候二叉树的每个节点最多被访问一次,因此时间复杂度为 O(n)。
空间复杂度:O(n),其中 n 为二叉树的节点个数。递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,即二叉树的高度。最坏情况下二叉树为一条链,树的高度为 n,递归最深达到 nn 层,故最坏情况下空间复杂度为 O(n) 。
2-2、集合【中序遍历】
中序遍历时,判断当前节点是否大于中序遍历的前一个节点,如果大于,说明满足 BST,继续遍历;否则直接返回 false。【左,根,右】,根本次校验相同在于,左< 根 < 右。
class Solution{
//初始化最小值
long pre = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root) {
if(root == null) return true;
//此时已经递归到TreeNode的最左子树
isValidBST(root.left);
if(pre >= root.val) return false;
pre = root.val;
//此时再递归到TreeNode到右子树
return isValidBST(root.right);
}
}
复杂度分析
时间复杂度:O(n),其中 n为二叉树的节点个数。二叉树的每个节点最多被访问一次,因此时间复杂度为 O(n)。
空间O(1), 常数变量。