98. 验证二叉搜索树

1、题目描述

2、解决思路

二叉搜索树的特性,二叉树的左子树不为空,则左子树上所有节点的值均小于它的根节点的值; 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;它的左右子树也为二叉搜索树。

2-1、【递归】

class Solution {
    public boolean isValidBST(TreeNode root) {
       return vaildDFS(root, Long.MIN_VALUE, Long.MAX_VALUE);     
    }

    private boolean vaildDFS(TreeNode root,long lower,long upper){
         if(root == null) return true;
         
         if(root.val <= lower || root.val >= upper)
              return false;
         return vaildDFS(root.left,lower,root.val) && vaildDFS(root.right,root.val,upper);
    }
}

复杂度分析

时间复杂度:O(n),其中 n 为二叉树的节点个数。在递归调用的时候二叉树的每个节点最多被访问一次,因此时间复杂度为 O(n)。

空间复杂度:O(n),其中 n 为二叉树的节点个数。递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,即二叉树的高度。最坏情况下二叉树为一条链,树的高度为 n,递归最深达到 nn 层,故最坏情况下空间复杂度为 O(n) 

2-2、集合【中序遍历】

中序遍历时,判断当前节点是否大于中序遍历的前一个节点,如果大于,说明满足 BST,继续遍历;否则直接返回 false。【左,根,右】根本次校验相同在于,左< 根 < 右

class Solution{
   //初始化最小值
   long pre = Long.MIN_VALUE;
   public boolean isValidBST(TreeNode root) {
        if(root == null) return true;
  
        //此时已经递归到TreeNode的最左子树
        isValidBST(root.left);
        if(pre >= root.val) return false;
        pre = root.val;
   
        //此时再递归到TreeNode到右子树
        return  isValidBST(root.right);
   }
}

复杂度分析

时间复杂度:O(n),其中 n为二叉树的节点个数。二叉树的每个节点最多被访问一次,因此时间复杂度为 O(n)。
空间O(1),  常数变量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值