huitailangyz
码龄8年
关注
提问 私信
  • 博客:143,104
    143,104
    总访问量
  • 31
    原创
  • 2,260,411
    排名
  • 41
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2016-08-24
博客简介:

huitailangyz的博客

查看详细资料
个人成就
  • 获得205次点赞
  • 内容获得51次评论
  • 获得591次收藏
  • 代码片获得821次分享
创作历程
  • 2篇
    2022年
  • 5篇
    2021年
  • 18篇
    2020年
  • 1篇
    2019年
  • 8篇
    2018年
成就勋章
TA的专栏
  • Transformer
    1篇
  • 对比学习
    1篇
  • 强化学习
    3篇
  • 特征解耦
    1篇
  • 人脸编辑
    1篇
  • 3D
    1篇
  • 对抗样本
    2篇
  • Leetcode
    2篇
  • 算法
    2篇
  • 人脸检测
    1篇
  • 图像生成
    3篇
  • Image Caption
    1篇
  • 论文阅读
    18篇
  • 文档页面分割
    2篇
  • 图像语义分割
    1篇
  • tensorflow
    1篇
  • 技术文档
    8篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

在RTX 3090上安装Pytorch-1.6

近来因为复现别人的工作需要,必须使用1.6版本的Pytorch,但是Pytorch官方说明1.6版本最高只支持CUDA10.2,而实验室最近服务器升级了RTX 3090,至少要求CUDA11,因此两者无法兼容。经过一通折腾,最后采用在服务器上安装nvidia-docker来解决这一需求。初始时服务器的配置如下:操作系统:Ubuntu 20.04 Nvidia-driver:495.46 CUDA:11.5 cudnn:8.3.2安装nvidia-dockerInstallation
原创
发布博客 2022.04.20 ·
3507 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

服务器GPU升级记录

最近服务器GPU进行了升级,从1080Ti终于升级到了3090,但是随之而来的问题就是以前配置的运行环境全都乱了,以前的代码也都跑不了= = 因此折腾了整整一个礼拜彻底升级了服务器,把一路上遇到的坑在此记录一下总结操作系统:Ubuntu 16.04 升级至 Ubuntu 20.04 CUDA:11.5 Nvidia-driver:495.46 CuDNN:8.3.2 Tensorflow:1.15(nvidia版) Pytorch:1.10说明: 一开始其实很不想升级操作系统,因此很害怕
原创
发布博客 2022.03.21 ·
1748 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python中各种文件类型的读写

本文汇总了在python中各种类型文件的读取和写入,包含文本、图像、表格、log文件、pickle文件、npy文件、npz文件等。文本类型:txt文件 图像类型:使用skimage、PIL、opencv、imageio/scipy、plt库 表格类型:xlsx文件、csv文件 其他类型:log文件、pickle文件、npy文件、npz文件文本类型txt文件text_name = 'test.txt'# 文件写入lines = ['aaa
', 'bbb
', 'ccc...
原创
发布博客 2021.08.21 ·
2767 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

python多进程/多线程处理文件模版

多进程版本import clickimport globimport osimport numpy as npimport multiprocessingimport timedef run_process(index, from_path, to_path, queue_lock, writer_lock, files, results): # 记录该进程处理文件数 count = 0 while files: # 取文件 que
原创
发布博客 2021.03.30 ·
378 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【论文阅读】Attention Is All You Need

【2017NIPS】论文:https://arxiv.org/pdf/1706.03762v5.pdf代码:https://github.com/tensorflow/tensor2tensor本文提出了新的网络结构Transformer,仅仅依靠注意力机制而不再使用循环和卷积结构训练可以采用并行化,从而大大缩短训练时间介绍现有的循环模型每个时间步依次计算,这种序列化的方法大大阻碍了训练的并行尽管有工作采用一些技巧提高了计算效率,但是这种序列化的本质问题仍然存在...
原创
发布博客 2021.02.06 ·
637 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【论文阅读】A Survey on Contrastive Self-supervised Learning

论文地址:https://arxiv.org/abs/2011.00362介绍有监督的方法的问题:1、需要昂贵的标记数据2、泛化性能差3、遭受对抗攻击大量的方法开始寻找不需要大量昂贵的标记的方法,通过自监督来学习特征表示随着2014年GAN被提出,有许多基于GAN的自监督的生成模型,但是GAN也存在问题:1、模型参数比较振荡,很难收敛2、判别器通常比生成器训练得更好,使得生成器很难生成逼真的样本对比学习是一种判别方法,旨在将相似样本靠近,将不同的样本之间距..
原创
发布博客 2021.01.31 ·
2328 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

对比学习&Transformer论文清单

终终终终于放假了= =寒假可以看点自己感兴趣的论文了,今年大火的对比学习和一些Transformer相关的论文一直存着没看列个论文清单,有空的话慢慢看过去Contrastive Learning综述 A Survey on Contrastive Self-supervised Learning【20.11】具体方法 A Simple Framework for Contrastive Learning of Visual Representations(SimCLR)【ICML2020
原创
发布博客 2021.01.30 ·
1641 阅读 ·
1 点赞 ·
0 评论 ·
22 收藏

常用git命令

绘制不同branch之间的关系图git log --oneline --graph --decorate --all重组中间的commit信息git rebase -i commit-id(需要修改的前一次)合并另一个分支中的某个文件或文件夹(将B中的内容合并到A中)// 首先切换到分支Agit checkout A// 合并git checkout B public/** view/index.html暂时保存工作区和暂存区的内容git stash [save “XXXX”]全部恢复
原创
发布博客 2020.08.29 ·
200 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【论文阅读】Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motiv

【2016NIPS】任务:层次强化学习本文提出了层次强化学习,顶层使用价值函数让策略模型学习到内在目标,底层则决定具体的动作,从而来满足顶层提出的给定目标内在目标可以提供更多的探索,从而缓解稀疏反馈的问题,目标定义在entity和相互之间关系的空间中,可以限制探索空间,提高学习效率模型整体结构由两阶段的层次化结构组成顶层meta-controller输入为状态sts_tst​,输出为目标gtg_tgt​下层controller的输入为gtg_tgt​和sts_tst​,输出为动作ata_t
原创
发布博客 2020.08.15 ·
1006 阅读 ·
0 点赞 ·
3 评论 ·
4 收藏

【论文阅读】Interpreting the Latent Space of GANs for Semantic Face Editing

【2020CVPR】Shen, Yujun, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. “Interpreting the latent space of gans for semantic face editing.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9243-9252. 2020.https://github.com
原创
发布博客 2020.08.13 ·
2758 阅读 ·
0 点赞 ·
3 评论 ·
7 收藏

【论文阅读】Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

【2020CVPR】best papar awardWu, Shangzhe, Christian Rupprecht, and Andrea Vedaldi. “Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognit
原创
发布博客 2020.08.05 ·
2142 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

【论文阅读】Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives

【2020ICLR】Goyal, Anirudh, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua Bengio. “Reinforcement learning with competitive ensembles of information-constrained primitives.” arXiv preprint arXiv:1906.10667 (2019).任务:强化学习的迁移学习本文提出的
原创
发布博客 2020.07.31 ·
447 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】Discovering Reinforcement Learning Algorithms

【2020.7 arxiv】Oh, Junhyuk, Matteo Hessel, Wojciech M. Czarnecki, Zhongwen Xu, Hado van Hasselt, Satinder Singh, and David Silver. “Discovering Reinforcement Learning Algorithms.” arXiv preprint arXiv:2007.08794 (2020).任务:使用meta-learning方法学习通用的强化学习算法解决自动
原创
发布博客 2020.07.31 ·
483 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

对抗样本攻击方法总结

本文总结了近年提出的各种对抗样本的攻击方法。对抗样本的攻击主要分为无特定目标攻击(即只要求分类器对对抗样本错误分类,而不特定要求错误分类到哪一类)和特定目标攻击(即要求分类器将对抗样本错误分类到特定类别)。本文先介绍无特定目标攻击的目标函数,然后介绍FGSM、BIM、StepLL、MI-FGSM、DIM、TIM、SI-NI方法。攻击目标函数arg⁡max⁡xadvJ(xadv,y) s.t. ∥xadv−xreal ∥∞≤ϵ\begin{aligned}&\un
原创
发布博客 2020.07.16 ·
5386 阅读 ·
7 点赞 ·
2 评论 ·
54 收藏

【Leetcode】Two Star Programming

Leetcode 203Two Star Programming方法使用双重指针对链表中的一些节点进行删除代码:struct ListNode { int val; struct ListNode *next;};struct ListNode* removeElements(struct ListNode* head, int val){ struct ListNode **temp = &head; while (*temp){ if
原创
发布博客 2020.07.12 ·
159 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Leetcode】Floyd Cycle Detection

Leetcode 202Floyd Cycle Detection算法检测链表中是否有环,以及求环的长度、环的起点在链表中的位置检测是否有环从链表起点出发,使用快慢两个指针,快指针每次走两步,慢指针每次走一步,如果两个指针相遇,则说明链表有环,如果快指针到达链表尾而两者仍为相遇,则说明无环求环的长度当检测到有环(即快慢指针相遇后),让快指针留在原地,慢指针再走一圈(每次一步),再次相遇时经过的步数即为长度求环的起点在链表中的位置当检测到有环(即快慢指针相遇后),让快指针留在原地,将慢指针移到链
原创
发布博客 2020.07.12 ·
220 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】Query-efficient Meta Attack to Deep Neural Networks

【2020ICLR】Du, Jiawei, Hu Zhang, Joey Tianyi Zhou, Yi Yang, and Jiashi Feng. "Query-efficient Meta Attack to Deep Neural Networks."arXiv preprint arXiv:1906.02398(2019).任务:基于meta-learning的灰盒攻击本文研究的内容是基于meta-learning的灰盒攻击,使用一个autoencoder网络结构来估计...
原创
发布博客 2020.06.16 ·
1219 阅读 ·
0 点赞 ·
2 评论 ·
5 收藏

对抗样本方向(Adversarial Examples)2018-2020年最新论文调研

调研范围2018NIPS、2019NIPS、2018ECCV、2019ICCV、2019CVPR、2020CVPR、2019ICML、2019ICLR、2020ICLR2018NIPSContamination Attacks and Mitigation in Multi-Party Machine Learning(防御)作者:Jamie Hayes(Univeristy College London) Olga Ohrimenko(Microsoft Research)摘要:Machine
原创
发布博客 2020.06.15 ·
18420 阅读 ·
34 点赞 ·
1 评论 ·
116 收藏

vscode通过跳板机连接远程服务器

使用背景一般实验室等环境的服务器是设置在内网环境中的,无法直接使用笔记本在公共环境下直接连接。但是由于种种原因,会出现在这样的场景下需要连接服务器的需求,而通过跳板机是一种常见的办法。一般通过ssh先后连接跳板机再跳转至服务器的方法,在编程时仅能通过vim等工具使用命令行环境,十分不方便。本文在vscode的环境下,通过跳板机连接到远程服务器,从而实现在服务器编写程序时,与在本地vscode编程环境一样便捷的效果。准备工具vscode (自行安装,不赘述)ssh (windows自带的可能版本
原创
发布博客 2020.05.27 ·
10594 阅读 ·
10 点赞 ·
0 评论 ·
29 收藏

【论文阅读】Hierarchical Attention for Part-Aware Face Detection

【2019IJCV】Wu, Shuzhe, Meina Kan, Shiguang Shan, and Xilin Chen. “Hierarchical Attention for Part-Aware Face Detection.” International Journal of Computer Vision 127, no. 6-7 (2019): 560-578.任务:人脸检测...
原创
发布博客 2020.05.06 ·
637 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多