题目:输入n个整数,找出其中最小的k个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4
这道题最简单的思路莫过于把输入的n个整数排序,排序之后位于最前面的k个数就是最小的k个数。这种思路的时间复杂度是O(nlogn),面试官会提示我们还有更快的算法。
解法一:O(n)的算法,只有当我们可以修改输入的数组时可用
从上一题中我们可以得到启发,我们同样可以基于Partition函数来解决这个问题。如果基于数组的第k个数字来调整,使得比第k个数字小的所有数字都位于数组的左边,比第k个数字大的所有数字都位于数组的右边。这样调整之后,位于数组中左边的k个数字就是最小的k个数字。下面是基于这种思路的Java代码:
-
-
-
-
- package swordForOffer;
-
-
-
-
-
-
- public class E30KLeastNumbers {
-
- public int partition(int[] arr, int left, int right) {
- int result = arr[left];
- if (left > right)
- return -1;
-
- while (left < right) {
- while (left < right && arr[right] >= result) {
- right--;
- }
- arr[left] = arr[right];
- while (left < right && arr[left] < result) {
- left++;
- }
- arr[right] = arr[left];
- }
- arr[left] = result;
- return left;
- }
- public int[] getLeastNumbers(int[] input,int k){
- if(input.length == 0 || k<= 0)
- return null;
- int[] output = new int[k];
- int start = 0;
- int end = input.length-1;
- int index = partition(input,start,end);
- while(index != k-1){
- if(index > k-1){
- end = index -1;
- index = partition(input,start ,end);
- }
- else{
- start = index+1;
- index = partition(input,start ,end);
- }
- }
- for(int i = 0;i<k;i++){
- output[i] = input[i];
- }
- return output;
- }
- public static void main(String[] args){
- int[] arr= {4,5,1,6,2,7,3,8};
- E30KLeastNumbers test = new E30KLeastNumbers();
- int[] output=test.getLeastNumbers(arr, 4);
- for(int i = 0;i<output.length ;i++){
- System.out.print(output[i]+",");
- }
- }
- }
采用这种思路是有限制的。我们需要修改输入的数组,因为函数Partition会调整数组中数字的顺序。如果面试官要求不能修改输入的数组,我们该怎么办的呢?
解法二:O(nlogk)的算法,特别适用处理海量数据
我们可以先创建一个大小为k的数据容器来存储最小的k个数字,接下来我们每次从输入的n个整数中读入一个数。如果容器中已有数字少于k个,则直接把这次读入的整数放入容器中;如果容器中已有k个数字了,也就是容器已满,此时我们不能再插入新的数字了而只能替换已有的数字。找出这已有的k个数中的最大值,然后拿这次待插入的整数和最大值进行比较。如果待插入的值比当前已有的最小值小,则用这个数替换当前已有的最大值;如果待插入的值比当前已有的最大值还大,那么这个数不可能是最小的k个整数之一,于是我们可以抛弃这个整数。
因此当容器满了之后,我们要做3件事;一是在k个整数中找到最大数;二是有可能在这个容器中删除最大数;三是有可能要插入一个新的数字。如果用一个二叉树来实现这个容器,那么我们能在O(logk)时间内实现这三步操作。因此对于n个输入的数字而言,总的时间效率是O(nlogk).
我们可以选择用不同的二叉树来实现这个数据容器。由于每次都需要找到k个整数中的最大数字,我们很容易想到用最大堆。在最大堆中,根节点的值总是大于它的子树中的任意结点的值。于是我们每次可以在O(1)得到已有的k个数字中的最大值,但需要O(logk)时间完成删除及插入操作。
下面是Java代码实现步骤:
-
-
-
-
- package swordForOffer;
-
- import java.util.Arrays;
-
-
-
-
-
-
- public class E30KLeastNumbers {
-
- public void buildMaxHeap(int[] arr,int lastIndex){
- for(int i = (lastIndex-1)/2;i>=0;i--){
- int k = i;
- while(2*k+1 <= lastIndex){
- int biggerIndex = 2*k+1;
- if(biggerIndex <lastIndex){
- if(arr[biggerIndex]< arr[biggerIndex+1])
- biggerIndex++;
- }
- if(arr[k] < arr[biggerIndex]){
- swap(arr,k,biggerIndex);
- k = biggerIndex;
- }
- else
- break;
- }
- }
- }
- public static void swap(int[] arr,int i ,int j){
- int temp = arr[i];
- arr[i] = arr[j];
- arr[j] = temp;
- }
- public void heapSort(int[] arr){
- for(int i = 0;i<arr.length-1;i++){
- buildMaxHeap(arr,arr.length-i-1);
- swap(arr,0,arr.length-i-1);
- }
- }
- public void getLeastNumbers(int[] arr,int k){
- if(arr == null || k<0 || k>arr.length)
- return;
-
-
-
-
- int[] kArray = Arrays.copyOfRange(arr, 0, k);
- heapSort(kArray);
- for(int i = k;i<arr.length;i++){
- if(arr[i]<kArray[k-1]){
- kArray[k-1] = arr[i];
- heapSort(kArray);
- }
- }
- for(int i:kArray)
- System.out.print(i);
- }
- public static void main(String[] args){
- int[] arr= {4,5,1,6,2,7,3,8};
- E30KLeastNumbers test = new E30KLeastNumbers();
- test.getLeastNumbers(arr, 3);
- }
- }
解法比较:
基于函数Partition的第一种解法的平均时间复杂度是O(n),比第二种思路要快,但同时它也有明显的限制,比如会修改输入的数组。
第二种解法虽然要慢一点,但它有两个明显的优点。一是没有修改输入的数据。二是该算法适合海量数据的输入(包括百度在内的多家公司非常喜欢与海量数据相关的问题)。假如题目是要求从海量的数据中找出最小的k个数字,由于内存的大小是有限的,有可能不能把这些海量数据一次性全部加载入内存。这个时候,我们可以辅助存储空间(比如磁盘)中每次读入一个数字,根据GetLeastNumbers的方式判断是不是需要放入容器LeastNumbers即可。这种思路只要求内存能够容纳leastNumbers即可。因此它适合的情形就是n很大并且k较小的问题。
如下图比较两种算法:
由于这两种算法各有优缺点,各自适用于不同的场合,因此应聘者在动手写代码之前要清楚题目的要求,包括输入的数据量有多大,能否一次性载入内存,是否允许交换输入数据中数字的顺序等。