剑指Offer面试题30(java版):最小的k个数

题目:输入n个整数,找出其中最小的k个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4

这道题最简单的思路莫过于把输入的n个整数排序,排序之后位于最前面的k个数就是最小的k个数。这种思路的时间复杂度是O(nlogn),面试官会提示我们还有更快的算法

解法一:O(n)的算法,只有当我们可以修改输入的数组时可用

从上一题中我们可以得到启发,我们同样可以基于Partition函数来解决这个问题。如果基于数组的第k个数字来调整,使得比第k个数字小的所有数字都位于数组的左边,比第k个数字大的所有数字都位于数组的右边。这样调整之后,位于数组中左边的k个数字就是最小的k个数字。下面是基于这种思路的Java代码:

[java]  view plain  copy
  1. /** 
  2.  * 输入n个整数,找出其中最小的k个整数,找出其中最小的k个数。 
  3.  * 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字为1,2,3,4 
  4.  */  
  5. package swordForOffer;  
  6.   
  7. /** 
  8.  * @author JInShuangQi 
  9.  * 
  10.  *         2015年8月8日 
  11.  */  
  12. public class E30KLeastNumbers {  
  13.     // 使用partition函数  
  14.     public int partition(int[] arr, int left, int right) {  
  15.         int result = arr[left];  
  16.         if (left > right)  
  17.             return -1;  
  18.   
  19.         while (left < right) {  
  20.             while (left < right && arr[right] >= result) {  
  21.                 right--;  
  22.             }  
  23.             arr[left] = arr[right];  
  24.             while (left < right && arr[left] < result) {  
  25.                 left++;  
  26.             }  
  27.             arr[right] = arr[left];  
  28.         }  
  29.         arr[left] = result;  
  30.         return left;  
  31.     }  
  32.     public int[] getLeastNumbers(int[] input,int k){  
  33.         if(input.length == 0 || k<= 0)  
  34.             return null;  
  35.         int[] output = new int[k];  
  36.         int start = 0;  
  37.         int end = input.length-1;  
  38.         int index = partition(input,start,end);  
  39.         while(index != k-1){  
  40.             if(index > k-1){  
  41.                 end = index -1;  
  42.                 index = partition(input,start ,end);  
  43.             }  
  44.             else{  
  45.                 start = index+1;  
  46.                 index = partition(input,start ,end);  
  47.             }  
  48.         }  
  49.         for(int i = 0;i<k;i++){  
  50.             output[i] = input[i];  
  51.         }  
  52.         return output;  
  53.     }  
  54.     public static void main(String[] args){  
  55.         int[] arr= {4,5,1,6,2,7,3,8};  
  56.         E30KLeastNumbers test = new E30KLeastNumbers();  
  57.         int[] output=test.getLeastNumbers(arr, 4);  
  58.         for(int i = 0;i<output.length ;i++){  
  59.             System.out.print(output[i]+",");  
  60.         }  
  61.     }  
  62. }  
采用这种思路是有限制的。我们需要修改输入的数组,因为函数Partition会调整数组中数字的顺序。如果面试官要求不能修改输入的数组,我们该怎么办的呢?

解法二:O(nlogk)的算法,特别适用处理海量数据

我们可以先创建一个大小为k的数据容器来存储最小的k个数字,接下来我们每次从输入的n个整数中读入一个数。如果容器中已有数字少于k个,则直接把这次读入的整数放入容器中;如果容器中已有k个数字了,也就是容器已满,此时我们不能再插入新的数字了而只能替换已有的数字。找出这已有的k个数中的最大值,然后拿这次待插入的整数和最大值进行比较。如果待插入的值比当前已有的最小值小,则用这个数替换当前已有的最大值;如果待插入的值比当前已有的最大值还大,那么这个数不可能是最小的k个整数之一,于是我们可以抛弃这个整数。

因此当容器满了之后,我们要做3件事;一是在k个整数中找到最大数;二是有可能在这个容器中删除最大数;三是有可能要插入一个新的数字。如果用一个二叉树来实现这个容器,那么我们能在O(logk)时间内实现这三步操作。因此对于n个输入的数字而言,总的时间效率是O(nlogk).

我们可以选择用不同的二叉树来实现这个数据容器。由于每次都需要找到k个整数中的最大数字,我们很容易想到用最大堆。在最大堆中,根节点的值总是大于它的子树中的任意结点的值。于是我们每次可以在O(1)得到已有的k个数字中的最大值,但需要O(logk)时间完成删除及插入操作。

下面是Java代码实现步骤:

[java]  view plain  copy
  1. /** 
  2.  * 输入n个整数,找出其中最小的k个整数,找出其中最小的k个数。 
  3.  * 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字为1,2,3,4 
  4.  */  
  5. package swordForOffer;  
  6.   
  7. import java.util.Arrays;  
  8.   
  9. /** 
  10.  * @author JInShuangQi 
  11.  * 
  12.  *         2015年8月8日 
  13.  */  
  14. public class E30KLeastNumbers {  
  15.     //新建大顶堆  
  16.     public void buildMaxHeap(int[] arr,int lastIndex){  
  17.         for(int i = (lastIndex-1)/2;i>=0;i--){  
  18.             int k = i;  
  19.             while(2*k+1 <= lastIndex){  
  20.                 int biggerIndex = 2*k+1;  
  21.                 if(biggerIndex <lastIndex){  
  22.                     if(arr[biggerIndex]< arr[biggerIndex+1])  
  23.                         biggerIndex++;  
  24.                 }  
  25.                 if(arr[k] < arr[biggerIndex]){  
  26.                     swap(arr,k,biggerIndex);  
  27.                     k = biggerIndex;  
  28.                 }  
  29.                 else  
  30.                     break;  
  31.             }  
  32.         }  
  33.     }  
  34.     public static void swap(int[] arr,int i ,int j){  
  35.         int temp = arr[i];  
  36.         arr[i] = arr[j];  
  37.         arr[j] = temp;  
  38.     }  
  39.     public void heapSort(int[] arr){  
  40.         for(int i = 0;i<arr.length-1;i++){  
  41.             buildMaxHeap(arr,arr.length-i-1);  
  42.             swap(arr,0,arr.length-i-1);  
  43.         }  
  44.     }  
  45.     public void getLeastNumbers(int[] arr,int k){  
  46.         if(arr == null || k<0 || k>arr.length)  
  47.             return;  
  48.         //根据输入数组前k个数简历最大堆  
  49.         //从k+1个数开始与根节点比较  
  50.         //大于根节点,舍去  
  51.         //小于,取代根节点,重建最大堆  
  52.         int[] kArray = Arrays.copyOfRange(arr, 0, k);  
  53.         heapSort(kArray);  
  54.         for(int i = k;i<arr.length;i++){  
  55.             if(arr[i]<kArray[k-1]){  
  56.                 kArray[k-1] = arr[i];  
  57.                 heapSort(kArray);  
  58.             }  
  59.         }  
  60.         for(int i:kArray)  
  61.             System.out.print(i);  
  62.     }  
  63.     public static void main(String[] args){  
  64.         int[] arr= {4,5,1,6,2,7,3,8};  
  65.         E30KLeastNumbers test = new E30KLeastNumbers();  
  66.         test.getLeastNumbers(arr, 3);  
  67.     }  
  68. }  
解法比较:

基于函数Partition的第一种解法的平均时间复杂度是O(n),比第二种思路要快,但同时它也有明显的限制,比如会修改输入的数组。

第二种解法虽然要慢一点,但它有两个明显的优点。一是没有修改输入的数据。二是该算法适合海量数据的输入(包括百度在内的多家公司非常喜欢与海量数据相关的问题)。假如题目是要求从海量的数据中找出最小的k个数字,由于内存的大小是有限的,有可能不能把这些海量数据一次性全部加载入内存。这个时候,我们可以辅助存储空间(比如磁盘)中每次读入一个数字,根据GetLeastNumbers的方式判断是不是需要放入容器LeastNumbers即可。这种思路只要求内存能够容纳leastNumbers即可。因此它适合的情形就是n很大并且k较小的问题。

如下图比较两种算法:

由于这两种算法各有优缺点,各自适用于不同的场合,因此应聘者在动手写代码之前要清楚题目的要求,包括输入的数据量有多大,能否一次性载入内存,是否允许交换输入数据中数字的顺序等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值