quaternions 4-Stereographic projection (3d)

  • so here we have a sphere and the sphere is getting stereographically projected onto a plane .and what I mean by that is you sort of imagine shining a point from the very bottom of that sphere, the South Pole .
  • and for any given point on the sphere you look at where the line through that point intersects the plane,and that gives you an association between points on the sphere and points on the plane.
  • and in the upper-right you can kind of see a copy of that plane and as that sphere rotates you can see what that does to the stereographic projection of it.
  • okay ,so you might be wondering about the coordinate system and the controls that I have in the upper left here .
  • so to make things analogous with quaternions ,the way I want you thinking about this, is that the z axis perpendicular to the plane, is the real number line with the number one sitting a unit above the plane and the number negative one sitting one unit below the plane .
  • and then the plane itself is spanned by the I and the J axis where the I axis is our normal imaginary numbers and then the J axis is sort of like a new dimension of imaginary numbers。
  • now this coordinate system with one real dimension and two imaginary dimensions,is not a number system,the way that the complex numbers are or that the quaternions are. and I’ll say a little bit more about that in a moment, but again, it’s very helpful for thinking about quaternions to think in terms of(依据) this coordinate system.
  • so the number that you see on the upper left here, determines where that pink dot that starts off at the North Pole at the number one ends up,
  • and as you change those numbers the sphere is going to rotate in some way, that moves the pink dot North Pole to the coordinates that you’ve specified .
  • and again one of the really important points here is that the stereographic projection is only being applied to the points a distance one away from the origin where the sum of the squares of these components is equal to one.
  • so to make that constraint feel very visceral ,as you try to change one of these coordinates the other two are forced to change so as to maintain that property, and I’ll mention in a moment ,why we put this little rotation control there as well.
  • so the first thing I want you to do is limit your attention just to the pink dot on the sphere, and also where that pink dot goes in this 2d view on the upper right ,
  • and see if you can build an intuition for where that goes as you change the coordinates .so for example as I change I to b1 that pink dot moved to the spot one unit on the right as I change J to b1 that pink dot moved to be one unit above the center.
  • and of course,as you’re doing this the whole sphere is rotating and you’re seeing its various octants.
  • but just limit your attention for the moment to that pink dot and play around for a little bit ,so one thing you might notice in doing this ,is that the imaginary coordinates I and J seem to control the direction of that pink dot if I is one that pink dot is pointed to the right. if there’s a little bit more of a J component then it’s pointed right and up a little bit.
  • and then ,that real part as you change it controls how far away that is from the center and again that kind of makes sense. if the number one is at the North Pole and that gets projected straight to the center of the plane negative one is at the South Pole getting projected off to the point at infinity ,
  • then the closer you are to one the closer you are to the center of the plane. and the closer you are to negative one the farther away you are from the center of the plane.(结论)
  • again this is something you’ll see as you play around in the four-dimensional view. another thing I want you to notice here is what happens to the circles on the sphere ,as you rotate it under the stereographic projection.
  • so for example, maybe just focus on that equator ,the yellow circle as you rotate the sphere in some way that equator might get tilted out of place, and as it does what you see under the stereographic projection is that it seems to grow and warp .
  • but of course on the sphere itself it’s not changing shape ,it’s just getting reoriented. all of that warping and all of that growth is just an artifact of the projection.
  • and you’ll see things very analogous to that, when we’re in the four dimensional view.
  • all right, so what about this other control here, this rotation, the reason I wanted to put that there, is to emphasize a certain point about rotations of the sphere.
  • so this top control is just telling us where the North Pole goes. and really there’s only two degrees of freedom of that .
  • you might think of it as the latitude and the longitude for where that pink dot ends up. or maybe you think of it as we have three numbers but they’re subject to one constrain, so that gives us two degrees of freedom.
  • but that fact alone where the North Pole goes does not uniquely determine a reorientation of the sphere.
  • you have this separate degree of freedom based on how the equator rotates.
  • so the point here is that you need three degrees of freedom in order to describe a reorientation of the sphere,and that’s sort of different from how it is with the complex numbers.
  • you have one degree of freedom to describe where you are on the circle, but you also only need one degree of freedom to describe a unique rotation of that circle.
  • and that’s sort of why complex numbers on the unit circle give us a way to compute and describe rotation. a given point on that circle can be associated with a rotation of that circle. but you can’t do the same thing in three dimensions(conclusion).
  • you can’t uniquely associate a point on the sphere with a rotation of that sphere because you’re still missing a degree of freedom .
  • and that’s part of the reason why you need to go up to a four-dimensional number system to describe reorientations of a three-dimensional sphere. because in much the same way that it requires two degrees of freedom to tell you where you are on a sphere in three dimensions. it’ll take three degrees of freedom to describe where you are on a hyper sphere and those three degrees of freedom really nicely correspond to the three degrees of freedom for how you rotate a sphere in three-dimensional space .
  • all right so let’s jump up to four dimensions
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值