目录
摘要
抗菌肽(AMPs)是一类广泛研究的膜渗透肽,本文提供了AMP的历史概述,总结了以前机器学习在AMP中的应用,并在最新AMP文献的背景下讨论了作者最近在利用计算工具设计对耐药感染具有高治疗效果的新AMP候选物方面做了大量工作。
1 综述
机器学习擅长通过从已知的AMP序列外推到未知序列来发现“已知的未知”。
使用机器学习作为发现“未知的未知”的工具是可能的,通过使用它反射性地识别现有假设或分类中的局限性。由于机器学习能够量化肽的关键特性,原则上它包含有关膜渗透的物理化学机制的信息。在实践中,由于在将机器学习结果转化为控制物理原理方面存在固有的困难,因此很难提取这些信息。作者提出了一种绕过这些困难的方法,使用机器学习来指导校准实验,以揭示膜渗透的物理化学决定因素和机制。
这篇综述并不是对机器学习技术细节的全面回顾,而是强调最近机器学习在理解肽序列的物理化学与膜渗透几何结构之间的关系方面的惊人应用。
2 抗菌肽简介
AMP往往具有较短的氨基酸序列(小于50个氨基酸)、净阳离子(+2到+9)和两亲性。
AMPs通常分为三类:a-螺旋AMPs , β-折叠AMPs和富含特定氨基酸的延伸线性肽。
虽然amp通常是两亲性的,具有极性和疏水残基的分离基团,但一大类amp可以形成a-螺旋结构,其极性(带电)和疏水残基沿螺旋轴排列在相反的面上,从而形成表面两亲性,残基的这种独特表现形式通常被描述为“两亲性”。
体外实验表明,抗菌肽通常通过选择性破坏微生物膜发挥作用,菌活性通常依赖于amp与细菌膜之间的相互作用。
已经提出了不同的描述膜渗透的模型,包括“桶-壁”模型、“地毯”模型和“环形孔”模型等。在“桶壁”模型中,两亲性a-螺旋amp自组装成圆柱形束,垂直嵌入细胞膜形成孔隙。在膜内,单个amp的疏水性面朝向双分子层的疏水性内部,亲水性面彼此朝向形成水孔的管腔。在“地毯”模型中,amp以平行方向吸附在细胞膜上。一旦达到临界局部浓度,肽通过胶束作用使膜分解,与“桶壁”模型不同,这里不会形成孔隙。在“环形孔”模型中,amp垂直插入膜中形成孔,但与“桶状壁”模型不同的是,膜与孔壁结合在一起,与肽形成连续的界面。

抗菌肽对细菌膜的选择性优于真核生物膜,通常被认为是由于它们的膜之间的组成差异,细菌膜含有大量阴离子脂质,而真核生物膜主要含有两性离子脂质。事实上,体外实验表明,阴离子脂质的存在会导致阳离子膜活性抗菌剂对膜的破坏和渗透作用增加。
阴离子脂质的存在是amp渗透的必要条件但不是充分条件。amp首先通过静电结合到细菌细胞的膜表面与细菌细胞相互作用,在此过程中,肽的阳离子残基与阴离子脂质头基团和其他阴离子表面组分结合。在其螺旋轴平行于表面吸附到膜上后,AMP主要由其疏水残基与膜之间的疏水相互作用驱动,进入脂质双分子层。amp的两亲性使其能够直接与细胞膜相互作用,从而形成细胞膜渗透与细胞死亡。
3 AMP上的机器学习简史
3.1 机器学习基础
大多数已建立的学习方法都是围绕监督学习展开的,但关于无监督学习方法的文献正在迅速增长。本文讨论的大多数学习方法都集中在amp验证数据集的监督学习上。
3.2 机器学习方法和AMP研究的同步成熟
人工智能和机器学习的发展历史
amp生物物理分析的典型指标包括最小抑制浓度、最小杀菌浓度和结合亲和力的计算。这些指标,加上关于amp的序列信息,允许使用肽序列信息作为输入来训练各种监督学习模型。之前从头发现AMP的方法依赖于长期存在的生物信息学方法,包括序列比对和同源性建模来预测生物活性。现在机器学习辅助设计使AMP挖掘的成为可能。
3.3. 机器学习在AMP分类和发现中的最新应用
最早的机器学习模型是定量构效关系(QSAR)模型,它被证明有助于有效筛选和优化少量有希望的序列进行实验评估。QSAR模型试图使用物理化学描述符来预测分子的生物活性。肽的许多物理化学性质可以直接从其氨基酸序列中初步地计算出来。这种方法依赖于统计学习来推断物理化学性质和生物活性之间的经验关系

最低0.47元/天 解锁文章
202

被折叠的 条评论
为什么被折叠?



