目录
摘要
抗菌肽(AMPs)因其作为抗生素替代品的潜力而受到广泛研究,这归因于人们对新型抗菌剂的迫切需求。AMPs广泛存在于自然界中,尤其来自微生物,并具有广谱的抗菌活性,能够用于治疗由多种病原微生物引起的感染。由于这些肽主要是阳离子型,它们与细菌阴离子膜的静电相互作用更为倾向。然而,AMPs的应用目前受到限制,原因在于它们的溶血活性、较低的生物利用度、易受蛋白水解酶降解以及生产成本高昂。为了克服这些限制,纳米技术被用来提高AMPs的生物利用度、跨越屏障的渗透性和/或保护其免受降解。此外,机器学习由于其节省时间和成本的算法被用于预测AMPs,利用现有的众多数据库来训练机器学习模型。本综述重点介绍了AMP递送的纳米技术方法以及机器学习在AMP设计中的进展。本文详细讨论了AMP的来源、分类、结构、抗菌机制、在疾病中的作用、肽工程技术、现有数据库以及机器学习预测低毒性AMP的技术。
1. 引文
抗生素的发现是现代医学中最伟大的成就之一。然而,随着时间的推移,抗生素由于滥用和过度使用而变得越来越无效,导致耐药菌的出现。 在临床分离株中,抗生素耐药性突变已经在外排泵的启动子区域、抗生素的靶标以及抗生素的结合区域中被发现。抗生素耐药性是通过突变或翻译后修饰改变了靶标或使抗生素失效,从而导致治疗失败。美国疾病控制与预防中心(CDC)报告称,在美国,每年由于抗生素耐药性感染导致超过280万例感染和超过35,000例死亡。因此,寻找新型抗菌药物来应对这一挑战至关重要。
抗菌肽(AMPs)是开发新一代抗生素的重要来源。 AMPs对包括细菌、真菌、寄生虫和病毒在内的微生物具有广泛的活性。这些肽通过响应与病原体相关的分子模式,在固有免疫中发挥关键作用,通过增加白细胞向感染部位的招募以及传递损伤组织的信号来对抗感染。此外,AMPs还参与适应性免疫反应,因为它们已显示出能够招募未成熟的吞噬细胞和树突状细胞的能力。
AMPs可能具有其他特性,包括针对耐药微生物生物膜的能力,杀死癌细胞,以及促进伤口愈合。 生物膜抑制是AMPs的一个有利特性,因为生物膜导致了对各种抗生素的耐受性增加,并占据了大约三分之二的所有人类感染病例。在慢性伤口的情况下,生物膜的形成可能会延缓伤口的愈合,因此,AMPs有效破坏已形成的生物膜是促进伤口愈合的重要一步。
AMPs已在六个生命界中被发现,包括细菌、古细菌、原生生物、真菌、植物和动物。大多数天然AMPs(74%)来自动物,尤其是两栖动物和昆虫。 这些肽具有一些共同特征,如阳离子电荷(+1至+7)、短序列(小于50个氨基酸),通常是两亲性的。正电荷的来源是因为这些肽富含精氨酸、赖氨酸和组氨酸残基。 约50%的疏水和亲水残基的存在使这些肽具有两亲性,能够与细菌膜相互作用并进入细胞。这些肽可以折叠成不同的结构,包括α螺旋、β折叠、α螺旋和β折叠的组合以及非α-β结构。
AMPs对细菌的选择性高于真核细胞。 AMPs对细菌膜的选择性来源于细菌膜与真核细胞膜组成上的差异。真核细胞膜主要由如磷脂酰胆碱和鞘磷脂等带电中性的双性离子脂类组成,通常是中性的。而细菌膜则由如磷脂酰甘油和心磷脂等带负电荷的脂类构成。 阳离子AMPs与带负电荷的细菌膜之间的静电相互作用是其选择性的基础。需要指出的是,这种对细菌的偏好并不意味着AMPs完全不会与宿主细胞发生相互作用。例如,人类的cathelicidin和防御素等AMPs会以比最小抑菌浓度(MIC)低得多的浓度与宿主细胞受体(如GPCRs、MrgX2、FPR2和P2X7)结合。 这种相互作用不会破坏细胞,而是通过信号转导调节免疫功能。 这种AMPs的角色与多种生理过程,包括人类疾病,息息相关。
2. amp及其与人类疾病的关系
2.1 AMPs在呼吸系统疾病中的作用
抗菌肽(AMPs)在多种疾病中发挥防御作用,尤其是在呼吸系统疾病中。 例如,Rai等人回顾了多种基于AMP材料的制备方法及其对大脑、眼睛、口腔、皮肤和肺部感染的抗菌性能。由于AMPs在适应性和先天性免疫中的作用,它们可以在多个器官中对抗病原体,特别是在呼吸道中,AMPs通过上皮细胞提供保护屏障,抵御潜在感染。当感染发生时,上皮细胞、中性粒细胞和巨噬细胞会增殖并分泌AMPs,这些肽通过细胞内途径杀死入侵的病原体。例如,人类天然抗菌肽LL-37和与cathelicidin相关的抗菌肽(CRAMP)都展示了对甲型流感病毒的抗病毒活性。 研究表明,LL-37在体内外对甲型流感病毒具有显著效果,在体外可使病毒滴度减少90%,在感染后3天内使小鼠肺部病毒减少70-80%。
AMPs不仅在对抗呼吸道感染中发挥重要作用,还与非感染性肺部疾病有关。例如,在慢性阻塞性肺疾病(COPD)和囊性纤维化等呼吸道疾病中,研究发现AMP的表达与健康状态相比出现了不同(过度表达或下调),其中某些AMPs,如LL-37,在呼吸系统疾病中的过度表达可能影响疾病的进展。 例如,LL-37的升高与支气管炎症相关,可能加重疾病的严重程度。在COPD患者的气道中过度表达的LL-37可刺激黏液的过度产生,黏液的增加会促进疾病的进展。 同时,COPD患者中减少的β-防御素-2(hBD-2)水平也与囊性纤维化患者疾病的严重程度相关。这种AMP减少可能导致对不同病原体的易感性增加。
2.2 AMPs在自身免疫性疾病中的作用
研究表明,抗菌肽(AMPs)的表达在某些自身免疫性疾病的发病机制中发挥了重要作用。 银屑病、类风湿性关节炎和克罗恩病是几种与AMPs表达异常有关的自身免疫性疾病。银屑病是一种由感染、损伤或刺激引发的自身免疫性皮肤疾病,涉及先天免疫和适应性免疫的异常反应。与健康个体相比,银屑病患者的AMPs(如LL-37和人类β-防御素)的表达水平显著升高。 研究表明,LL-37可以作为一种自身抗原,通过与自身RNA结合激活Toll样受体(TLRs),从而导致银屑病的加剧。人类β-防御素(hBDs)也在银屑病的发生中起作用,例如,hBD-2被证明可以作为CCR6受体的配体,激活银屑病患者体内的Th17细胞,这种信号传导与银屑病的病理过程密切相关。
类风湿性关节炎是一种导致慢性炎症和关节破坏的疾病,患者会产生针对瓜氨酸化蛋白的特异性抗体,并与瓜氨酸化纤维蛋白形成复合物。研究发现,类风湿性关节炎患者体内肝脏表达的抗菌肽2(LEAP2)水平显著升高,表明LEAP2可能与类风湿性关节炎的炎症反应有关。 此外,人类β-防御素3(hBD-3)在类风湿性关节炎的病程中也起着关键作用,它通过激活基质金属蛋白酶,破坏软骨的细胞外基质,导致关节破坏。
克罗恩病是一种慢性炎症性疾病,特征是消化道不同区域出现复发性和间歇性的斑片状炎症。研究发现,克罗恩病患者的外周血中性粒细胞中LL-37的表达水平升高。 另一项研究也显示,LL-37在克罗恩病患者的发炎粘膜中表达增加,可能通过增强抗菌能力,在发炎的粘膜中发挥保护作用。此外,研究发现克罗恩病患者回肠中的人类α-防御素5(HD5)表达减少,这种防御素的减少可能与回肠炎症的发生和固有免疫功能的受损有关,进而促进疾病的发作。
2.3 AMPs在癌症中的作用
维生素D受体(VDR)在调节多种生理功能的基因表达中起着重要作用,特别是在免疫活性的调节中。 研究表明,VDR的失调是病原体耐药机制之一。由于VDR的失调,AMP的表达水平会发生变化,并通过改变DNA甲基化模式影响癌症的生物学过程。 各种AMPs,如α-防御素、β-防御素和LL-37,参与了多种肿瘤和癌症的发生发展,而VDR调节这些肽的表达。防御素是由真核生物产生的AMPs,某些防御素样肽在癌细胞中表现出抗增殖活性并诱导细胞凋亡,这通过MAPK p38的磷酸化增加得以验证。基于此特性,防御素可用于联合疗法,以克服化疗耐药性。例如,Johnstone等人发现防御素可以增强抗癌药物阿霉素对多药耐药肿瘤细胞的体外抗癌活性。 另一种α-防御素——人类中性粒细胞肽-1(HNP-1)也展示了除抗菌活性外的抗癌活性。研究表明,HNP-1在较低浓度的肽条件下,通过细胞膜缺陷诱导细胞凋亡。
癌细胞对阳离子AMPs的敏感性比正常细胞更高,可能是由于暴露了阴离子磷脂酰丝氨酸(PS)。 这种敏感性增加可能是由于癌细胞中未完全发育的细胞骨架所致。癌细胞具有较高的新陈代谢率,这促进了细胞骨架的变化,因此AMPs可以与癌细胞膜相互作用。有趣的是,LL-37在不同类型的癌症中表现出致癌或抗癌作用,具体取决于癌症类型。 例如,在胃癌和胰腺癌中,LL-37的表达下调,表明其可能具有抗癌作用。Zhang等人表明,LL-37在20 mg/kg的高浓度下,可以使胰腺肿瘤的生长减少42%。研究结果还表明,LL-37通过抑制自噬,导致活性氧(ROS)的积累,从而抑制了胰腺癌细胞的生长。另一项研究则发现,LL-37通过抑制蛋白酶体活性,激活骨形态发生蛋白(BMP)信号传导,从而抑制胃癌细胞的增殖。值得关注的是,LL-37的主要抗菌肽片段FK-16也展示了抗癌特性。例如,研究表明,FK-16能够通过非胱天蛋白酶依赖性机制诱导凋亡和自噬性细胞死亡,尤其是在结肠癌细胞中。
然而,LL-37在某些情况下也可能表现出致癌作用。 例如,Haussen等人的研究表明,人类肺癌细胞中过表达的LL-37会导致癌细胞的增殖增加。类似地,在小鼠模型中,LL-37的过表达也导致肿瘤体积比未过表达LL-37的对照组大。此外,LL-37在乳腺癌的发病机制中也发挥了作用。Weber等人发现,LL-37的处理促进了乳腺癌细胞的迁移,显示出较高的转移潜力。因此,在某些癌症中,hCAP18和LL-37的过表达可能作为癌症诊断的有用标志物。
2.4 AMPs在心血管疾病中的作用
心血管疾病是全球范围内的主要死亡原因之一,包括动脉粥样硬化和心力衰竭等疾病。动脉粥样硬化是血管中斑块的积累,是导致心血管疾病的主要原因之一。 Edfeldt等人发现,LL-37在动脉粥样硬化病变中表达,并调节炎症反应。 LL-37激活了粘附分子和趋化因子,导致白细胞的招募,从而促进了动脉粥样硬化的发生。Salamah等人进一步确定了LL-37存在于血小板中,当血小板活化时,LL-37被分泌并促进了血栓的形成。血栓的形成会导致进一步的并发症,如血栓阻塞,从而引发心力衰竭。
心力衰竭是由与心血管疾病相关的并发症引起的终末期状态,是其主要原因。 Zhou等人的研究表明,心力衰竭患者体内LL-37的表达水平降低,而心力衰竭小鼠模型的心脏和血清样本中,CRAMP(与LL-37相关的抗菌肽)的表达也有所减少。 在他们的研究中,补充CRAMP抑制了心脏肥大,表现在心房钠尿肽和B型钠尿肽的表达水平降低。血清中LL-37的存在表明,这种抗菌肽可能用作急性心力衰竭的生物标志物。例如,Bei等人表明,LL-37与中性粒细胞的比率较低可预测心肌梗死患者的不良预后。
2.5 AMPs在神经退行性疾病中的作用
神经炎症是由脑损伤或疾病引发的,由活化的小胶质细胞、星形胶质细胞和细胞因子释放导致。 过度活化的胶质细胞引起的炎症反应与神经退行性疾病的发展密切相关。Lee等人的研究表明,LL-37在大脑中的表达水平较其他器官更高,这表明LL-37的表达可能与阿尔茨海默病和帕金森病等慢性脑疾病相关。 此外,另一种人类抗菌肽——淀粉样β蛋白(Aβ)也与阿尔茨海默病的发病机制有关。Soscia等人发现,与非病变组织相比,阿尔茨海默病患者的组织中表现出更高的抗菌活性。虽然Aβ在保护阿尔茨海默病患者免受感染方面显示出了作用,但它也参与了该疾病的发病机制。 Wang等人进一步指出,AMPs表达的失调可能通过诱导Aβ沉积,参与阿尔茨海默病的发生和发展。这些研究表明,AMPs有可能作为阿尔茨海默病的生物标志物和治疗剂。
3. AMPs的抗菌机制
AMPs主要通过选择性破坏细菌膜来杀死微生物,其作用机制包括膜渗透。 这些渗透机制包括桶状钉模型、地毯模型和环孔模型。在桶状钉模型中,AMPs垂直嵌入微生物膜,自行组装形成跨膜通道。由于AMPs具有两亲性,其疏水面朝向微生物膜的内部,亲水面朝向孔道的内部,从而形成亲水孔道。 在地毯模型中,AMPs平行于微生物膜排列,被吸附以引发膜破坏。这种破坏通过形成胶束来实现,导致膜降解,最终引发微生物细胞死亡。 环孔模型与桶状钉模型类似,AMPs同样是垂直插入膜中形成孔道。但不同的是,细菌膜也参与了孔道的形成,这种作用导致脂质单层弯曲,形成与AMPs的连续界面。
一般来说,AMPs通过疏水相互作用和静电相互作用攻击微生物膜,导致细胞组分流失和电化学梯度的消失,从而引发细胞死亡。 然而,有证据表明,膜渗透并不是AMPs消灭细菌的唯一机制。一些AMPs,如兰替生素,主要针对细菌细胞壁。此外,AMPs还可以穿过微生物膜,结合细胞内靶点,抑制核酸和蛋白质的合成,最终导致细胞死亡。 对于革兰氏阴性菌,AMPs可能作为外膜脂多糖(LPS)的拮抗剂,LPS是一种内毒素,可以刺激促炎细胞因子的分泌,从而调节免疫反应。 该内毒素对细菌细胞结构的完整性和稳定性至关重要,提供了化学攻击的保护屏障,同时调控细胞膜的通透性。AMPs已被证明能够通过TLR4抑制LPS诱导的细胞反应,并通过与LPS的相互作用清除细胞外LPS,通常具有抗炎效果。
氨基酸是AMPs抗菌活性的重要组成部分。 天冬氨酸和谷氨酸是带负电的氨基酸,负责与二价阳离子结合,这对一些AMPs(如达托霉素)的抗菌活性至关重要。当这些负电氨基酸与二价阳离子结合时,AMPs的构象发生改变,增强了AMPs与细胞膜之间的相互作用。色氨酸是一种非极性氨基酸,位于与膜界面相交的蛋白质上。 色氨酸的侧链吲哚基团具有刚性和芳香性,限制了其进入烃核心的能力,因此色氨酸常用于增强短肽的活性。 精氨酸和赖氨酸是碱性氨基酸,它们赋予AMPs阳离子电荷,这是两亲性AMPs的重要特征。组氨酸残基可以作为质子传递体,能够通过调节pH值来改变AMPs的净正电荷,进而影响抗菌活性。 半胱氨酸残基可以形成二硫键,提高AMPs在化学、热和酶降解下的稳定性。 此外,脯氨酸残基通常由于其空间位阻和缺乏氢键而被认为是α螺旋结构中的“结构破坏者”,但有些富含脯氨酸的AMPs可以抑制核糖体的组装。
AMPs通过膜破坏的主要抗菌机制相比传统抗生素具有显著优势。 AMPs杀死病原体的速度更快,且具有较窄的有效浓度范围。与典型的抗生素仅作用于特定的细胞内靶点不同,AMPs可以作用于多种细胞内外靶点。 由于AMPs可以快速作用于病原体,且具有多种杀菌机制,因此降低了细菌对AMPs产生耐药性的机会。

4. AMPs临床应用的限制与策略
由于AMPs独特的性质和不同的抗菌机制,人们对其在生物医学中的应用越来越感兴趣。AMPs的成功在很大程度上取决于它们的结构和生物来源。 根据通用肽分类方案,AMPs可分为四类:线性肽(UCLL)、侧链连接肽(UCSS)、侧链-主链连接肽(UCSB)和主链连接肽(UCBB)。后三类属于环状肽。由于具有抗蛋白酶降解的稳定性,一些环状AMPs已被批准用于临床应用。然而,线性AMPs由于蛋白酶降解问题在临床应用中面临挑战。
4.1 来自原核生物的AMPs的临床应用
目前,已有少数获得美国食品药品监督管理局(FDA)批准的肽类抗生素用于临床治疗。这些抗生素大多属于天然AMPs。表1总结了这些肽的分子量、活性、靶向病原体、作用机制、给药途径、批准年份等。这些肽抗生素可以分为天然肽和工程肽两类。 天然肽包括杆菌肽、达托霉素、替考拉宁、万古霉素、粘菌素和革兰阴性菌素。 杆菌肽、达托霉素、替考拉宁和万古霉素主要用于抑制革兰氏阳性病原体,而粘菌素则是治疗革兰氏阴性病原体的最后手段。革兰阴性菌素则可杀死革兰氏阳性和阴性病原体。杆菌肽是一种环状七肽,具有赖氨酸侧链,常用于局部治疗由革兰氏阳性菌(如金黄色葡萄球菌)引起的皮肤感染。 达托霉素和粘菌素也具有环状结构,并连接有脂肪酸尾巴。万古霉素是一种侧链连接的肽类抗生素,适用于全身使用。替考拉宁的结构与万古霉素相似,它是一种由不同脂肪酸链结构组成的多分子混合物,具有较长的半衰期,可减少用药频率。
此外,达巴万星、奥利塔万星和替拉万星是为治疗万古霉素无效的革兰氏阳性细菌感染而开发的半合成脂肽类抗生素。这些药物均含有一个抑制转糖基化和转肽作用的七肽核心。 值得注意的是,达巴万星和奥利塔万星的半衰期范围为147至393小时,使得每周只需注射一次即可治疗感染。革兰阴性菌素D由80% A型、6% B型和14% C型组成,这些线性肽通过在细胞膜上形成离子通道对革兰氏阳性细菌具有特别强的杀伤作用。由于革兰阴性菌素具有高度的溶血性,只能局部用于治疗眼、鼻、喉和伤口感染。
4.2 正在临床应用研究中的真核生物AMPs
来自真核生物(如昆虫、两栖动物和哺乳动物)的多种AMPs已进入临床试验阶段,但尚未获得FDA的批准。 例如,Omiganan 是一种从吲哚里西啶衍生的药物,现已进入III期临床试验,主要用于减少导管上的微生物定植,并对酒渣鼻(一种自身炎症性皮肤病)发挥抗炎作用。Pexiganan 是从青蛙的magainin衍生出来的肽,已被用于治疗糖尿病足溃疡,但尚未获得批准。研究表明,当Pexiganan与乳酸链球菌素联合使用时,其抗菌效果更好,因为它们通过不同的机制杀死细菌。Iseganan 是从猪的cathelicidin(protegrin-1)衍生出的肽,曾在临床上用于治疗口腔粘膜炎。
更多的AMPs正在开发中。 例如,DP7(VQWRIRVAVIRK) 是一种对革兰氏阴性菌、革兰氏阳性菌和多重耐药细菌均有效的AMP。研究人员已经研究了DP7在抵抗生物膜生成方面的效果,以及它对急性呼吸综合征(SARS)冠状病毒的感染效果。研究表明,DP7能够减少假单胞菌生物膜的生成量,表明DP7可能通过结合生物膜生成过程中的目标蛋白来发挥作用。 Zhang等人的研究进一步表明,DP7能够通过阻止冠状病毒受体结合域(RBD)与ACE2受体的结合,抵御SARS-CoV和SARS-CoV-2的感染。
4.3 临床应用中的复杂性与潜在解决方案
AMPs在临床应用中面临一些限制。 其中一个主要问题是许多AMPs具有溶血活性,即破坏红细胞的能力。 这一特性在治疗中引发了极大的担忧,因为溶血可能导致贫血或治疗后死亡。AMPs还可能因胃肠道中的蛋白水解酶、血清蛋白酶及肾脏药物清除途径而被降解,从而导致口服生物利用度较差。 此外,AMPs的平均分子量较大(AMP数据库中的AMPs平均包含33个氨基酸),这可能会增加其制造成本。虽然AMPs可能降低细菌产生耐药性的几率,但仍有一些报道的耐药机制。这些耐药机制包括通过修饰细胞表面来减少细胞膜上的负电荷,从而降低AMPs与这些膜结合并杀死微生物的能力。其他耐药机制还包括抗菌药物外排泵、外部捕获、降解肽的蛋白酶、AMP隔离以阻止其进入细胞膜,以及生物膜的形成。因此,迫切需要开发技术来减少或消除AMPs相关的这些局限性。
新技术和方法可能克服AMPs应用中面临的挑战。 纳米技术是一个快速发展的领域,有潜力提高生物利用度,增加跨越屏障的通透性,保护AMPs免受pH值和酶等恶劣环境的影响,并控制AMPs的释放。 同时,计算方法可以避免在最初筛选阶段选择不佳的肽候选物,传统方法常依赖于在培养基中测试肽并确定其细胞毒性。计算机辅助设计AMPs的合理设计方法能够减少肽的氨基酸长度,在保持其抗菌特性的同时降低生产成本。 例如,LL-37已被缩短至12个氨基酸(KR-12)用于肽工程,而最近优化的脂肽仅由8个氨基酸组成。机器学习模型因其在肽发现中的成本效益而备受关注,这些模型可以通过挖掘抗菌活性与生化特性之间的关系来预测大规模环境中的AMPs。 机器学习方法还可以通过修改负责毒性的理化特性和化学修饰,潜在地降低AMPs的毒性。
虽然计算方法帮助克服了AMPs面临的一些障碍,但也存在一些计算挑战。随着新序列(如宏基因组)的可用性增加,这些序列有望帮助发现新的AMPs。 然而,使用同源性方法来预测小基因和AMP活性仍具挑战性。由于同源性方法在直接应用于AMPs时的局限性,需要使用不同的技术来应用于较长的肽。 Santos-Júnior开发了Macrel,使用宏基因组预测AMP序列和活性,该方法能够处理宏基因组片段,提取小开放阅读框(ORFs)并将其分类为AMPs或排除。 Macrel的过滤步骤有效地提高了高质量AMP序列的预测能力。
5. AMPs预测与设计的机器学习
5.3 机器学习简介
正如前面讨论的那样,机器学习是一种节省时间的技术,能够执行任务,如预测AMP,无需人工编程,并能通过修改算法来适应任务需求。这些技术被用于AMP序列的预测,以获得独特的性质,从而避免AMP可能存在的问题。例如,机器学习可用于开发无溶血性的AMPs,这是其在治疗应用中的限制。总的来说,随着对机器学习的了解不断加深,这项技术能够帮助缓解实验室中遇到的问题。
5.3.1 机器学习预测AMP序列
自2003年建立原始的抗菌肽数据库(APD)以来,机器学习方法就被用于预测AMPs。Lata等人开发了第一个支持向量机(SVM)模型,名为AntiBP2,用于基于APD数据预测AMPs。该SVM模型基于肽的氨基酸组成,采用五折交叉验证技术,准确率达到92.14%。 此外,基于APD,Xiao等人开发了一种基于伪氨基酸组成的模糊K最近邻算法。这种算法是一个多标签分类器,伪氨基酸组成成分整合了多种理化性质。该方法被称为iAMP-2L,在识别AMPs和非AMPs时的准确率达到了86.32%。 Torrent等人创建了一个人工神经网络(ANN)方法,将理化性质与抗菌活性相关联。该模型使用CAMP肽数据库作为正数据集,使用Uniprot数据库作为负数据集,整体准确率为90%。
Joseph等人开发了一个一对全分类器模型,使用随机森林和SVM来预测序列是抗菌的还是非抗菌的。在这种名为ClassAMP的多分类模型中,随机森林确定了分类的关键特征,ClassAMP在测试序列上的总体准确率约为95%。 Lawrence等人开发了一个名为amPEPpy的随机森林分类器,用于预测AMP序列。amPEPpy使用袋外错误(OOB)优化了使用的决策树数量,128棵决策树的OOB错误率为0.036。
5.3.2 机器学习在肽设计中的应用
最近,Capecchi等人开发了一种递归神经网络(RNN)方法,用于预测抗菌活性和溶血活性。RNN是神经网络的一种分支,通过模型中前一个时间步的反馈连接来进行预测。 与其他模型(如SVM、随机森林和朴素贝叶斯)相比,RNN在预测抗菌活性和溶血活性方面表现更好。RNN模型在溶血性预测和抗菌活性预测上的准确率为76%。 Sharma等人开发了一个预测抗生物膜肽的网络服务器,名为dPABBs,该服务器使用了氨基酸组成和选定的残基特征,并结合了六个SVM和Weka模型。基于训练数据集,dPABBs的准确率、灵敏度和特异性分别为95.24%、92.50%和97.73%。 Zhang等人使用基于氨基酸活性的机器学习方法设计了一种12个氨基酸长的AMP,名为DP7。DP7在体外和体内展示了广谱的抗菌活性。研究表明,DP7能够在感染后7天内将小鼠血流中的耐甲氧西林金黄色葡萄球菌(MRSA)感染减少70%-90%。 DP7还表现出比当前抗生素更高的效力,在1 mg/kg的剂量下,其保护水平相当于10 mg/kg的万古霉素。

AMP发现和设计的一般机器学习工作流程
6. 肽工程
由人类细胞和微生物产生的蛋白酶可能会限制AMPs的生物利用度。例如,LL-37可以被金黄色葡萄球菌的蛋白酶、aureolysin和V8蛋白酶降解,从而失去其抗微生物活性。为了避免AMPs的潜在失活,已经研究了肽工程技术,包括肽骨架修饰、环化、末端修饰以及将L-氨基酸替换为D-氨基酸或非天然氨基酸。最常见的末端修饰包括N端乙酰化和C端酰胺化,这些修饰使肽具备不同的功能。研究表明,N端乙酰化可以提高肽的稳定性和螺旋含量,这有助于其更深入地插入微生物膜的疏水区域。C端酰胺化则显示出增强抗微生物活性和降低溶血特性,这些都是抗微生物肽的有利特征。李等人通过计算设计了抗多药耐药细菌的抗微生物肽L163,但该肽会被蛋白酶降解。结果表明,L163的N端乙酰化提高了其稳定性并降低了宿主毒性。由于人类蛋白酶仅识别L-氨基酸进行降解,因此D-氨基酸显示出对蛋白酶降解的增强稳定性。陆等人通过替换D-氨基酸和非天然氨基酸合成了AMP Pep05(KRLFKKLLKYLRKF)的衍生物。结果显示,使用D-氨基酸和非天然氨基酸的替换增强了肽对金黄色葡萄球菌和大肠杆菌产生的蛋白酶的抗蛋白酶切割能力。当Pep05的所有L-氨基酸被替换为D-氨基酸时,导致了对蛋白酶的最高稳定性,但在体内表现出严重的毒性。王等人发现,将D-氨基酸和二苯丙氨酸部分掺入主要抗微生物肽LL-37中,导致对包括耐甲氧西林金黄色葡萄球菌(MRSA)在内的抗生素耐药细菌产生选择性、稳定且强效的抗微生物作用。用D-氨基酸制成的八氨基酸脂肽LL-37,在五种蛋白酶中保持稳定,显示出对MRSA的体内疗效。最近,怀特等人通过对LL-37最短抗微生物区域进行二聚化和头尾环化,开发了合成肽CD4-PP。这种环化形式在与aureolysin的比较中,稳定性为6小时,而LL-37在几分钟内就降解。以上结果表明,修饰肽以增强临床应用所需的稳定性是十分重要的。
7. AMP递送的纳米技术
这部分在这里不详细展开,仅作相应了解。纳米技术是一个正在发展的领域,涉及在纳米尺度上应用结构和系统,但是它现在已经被应用到具有有限治疗效果的药物输送中。纳米技术可以保护amp免受降解并提高其功效。纳米颗粒的范围从0.1纳米到100纳米不等,可以将多肽运输穿过肠道屏障进入血液。用于递送amp的各种纳米材料包括金属纳米颗粒(金、银)、脂质纳米颗粒(脂质体)、聚合物纳米颗粒[壳聚糖、透明质酸和聚(乙醇酸-共丙交酯)或聚乳酸],以及其他纳米结构(树状大分子、碳纳米管和量子点)。

8. 总结与展望
抗生素耐药性是医疗保健中一个重要的并发症,因为医生可能会面临无法使用抗生素的情况。研究表明,AMP在体外对病原微生物具有广泛的保护作用,且目前正在研究更多的AMPs作为抗生素的替代品。直到最近,研究人员通过修改已知的AMPs,单独测试它们对各种细菌的抗微生物效能,以发现新的AMPs,这一过程既耗时又昂贵,并需要大量资源。本文描述了机器学习方法作为识别AMPs的替代方法,预计将加速新型抗微生物剂的发现。AMP的活性已基于二维特征进行预测,例如氨基酸序列、净电荷和疏水性。机器学习不仅可以应用于预测AMP序列,还可以预测AMP的三维结构。通过机器学习预测AMP的三维结构将成为研究人员了解分子与AMP结合的重要工具,这在药物发现中扮演着重要角色。最近,机器学习也被用于预测针对SARS-CoV-2的AMP序列。利用计算模型,Liscano等人确定了两种AMP(caerin 1.6和caerin 1.10),这两种AMP显示出与SARS-CoV-2的刺突表面病毒蛋白(SGP)相互作用的潜力,而不是与ACE2蛋白相互作用。SGP蛋白位于SARS-CoV-2的包膜蛋白上,在病毒与宿主细胞的结合和融合中发挥作用。这些计算实验的结果表明,这些AMP具有在病毒结合和进入过程中阻断S蛋白和ACE2的潜力,但需要通过实验验证其有效性。具有抗微生物特性的纳米技术也有潜力改善口腔健康问题,如根管感染。目前,没有可用的技术能够在不影响根髓的情况下去除生物膜。纳米材料提供了独特的特性,包括去除生物膜;它们还能够避免去矿化并刺激再矿化。鉴于治疗根管感染的治疗技术有限,纳米载体可能成为解决口腔健康问题的有希望的方法。
因此,计算技术在设计未来抗生素方面具有巨大的潜力。在这方面,数据库筛选技术展示了在体外和体内具有强效活性的新型抗微生物剂的计算设计。同样,随着数据库中数据的积累,机器学习算法可以组装成一个管道,以预测序列来克服AMPs面临的问题。这些障碍包括酶降解、口服生物利用度差和溶血活性。作为例子,Plisson等人开发了预测溶血活性的模型,预测30%的AMP是非溶血性的,并且91%的预测被认为是可靠的。基于这些模型,设计非溶血肽应包括中性或微带电的序列,并具有等量的芳香族/脂肪族残基和小氨基酸。这些机器学习模型提供了有关非溶血AMP序列的信息,可以帮助研究人员开发具有最低毒性效应的AMP。结合肽工程和纳米技术等其他技术,研究人员可能会识别具有改善特性和生物利用度的新型AMP,以用于未来的应用。
总之,本文聚焦于AMP递送的纳米技术方法、AMP在各种疾病中的作用,以及通过机器学习进行AMP设计的最新进展。

被折叠的 条评论
为什么被折叠?



