第6讲看完,继续学习笔记。这一讲的最终目的是证明,能否用growth function来代替M。
知识点1:从第5讲中我们知道不同的hypothesis有不同的Growth function( )。
例如:Positive rays:, break point at 2;
Positive intervals: ,break point at 3;
Convex sets: ,no break point;
2D percenptron: ,break point at 4;
从这里我们可以看出break point和growth function的增长速度是有关系的。如果没有break point,growth function的增长是指数级(Exponential)的增长,如果有break point,growth function的增长是多项式(Polynomial)级的增长(这里是需要证明的)。
break point我们用k来表示。如果k=2,N=3,表示3个数据中任意2个数据是不能shatter的,shatter的意思是2个数据中不能包含全部4种不同的形式(O,O), (X,X), (X,O), (O,X)。
例如:
N=2, k=2
| X1 | X2 |
| O | O |
| O | X |
| X | O |
我们看到x1和x2没有shatter。这里的dichotomy最多有3个,不能出现第4个,否则就shatter了。
N=3, k=2
| x1 | x2 | x3 |
| O | O | O |
| O | O | X |
| O | X | O |
| X | O | O |
知识点2:Boudning Function B(N, k)上限函数,是break point=k时,Growth Function的最大可能数。
因为有些hypothesis的growth function是不知道的,但是我们可以知道这个hypothesis的break point是多少,这样在growth function不知道的情况下,我们就可以通过bounding function来知道growth function的最大成长函数是怎么样的。bounding function是不是多项式增长的?
| B(N,k) | k | |||||||
| N | 1 | 2 | 3 | 4 | 5 | 6 | ... | |
| 1 | 1 | 2 | 2 | 2 | 2 | 2 | ||
| 2 | 1 | 3 | 4 | 4 | 4 | 4 | ||
| 3 | 1 | 4 | 7 | 8 | 8 | 8 | ||
| 4 | 1 | <=5 | 11 | 15 | 16 | 16 | ||
| 5 | 1 | <=6 | <=16 | <=26 | 31 | 32 | ||
| 6 | 1 | <=7 | <=22 | <=42 | <=57 | 63 | ||
| ... | ||||||||
- B(2,2)=3,B(3,2)=4,从知识点1中得到的数据;
- B(1,1)=1, B(2,1)=1, B(3,1)=1, ... , B(N,1)=1;
- break point k>N & 任何k点不能shatter,B(N,k)=
;
- N=k时,从B(1,1)=1, B(2,2)=3, B(N,k)=
-1;
- B(4,3)=11(用程序算出了11个dichotomy);B(4,3)=2a+b; a+b<=B(3,3), a<=B(3,2) ==> 2a+b<=B(3,3)+B(3,2)
- B(N,k)<=B(N-1,k)+B(N-1,k-1)
最终公式,得到了最大项是
,所以得到了结论growth function的bounding function的上限是个多项式函数。这样我们就能用growth function来replace M了。
知识点3:Vapnik-Chervonekis (VC) bound
1650

被折叠的 条评论
为什么被折叠?



