- 博客(3)
- 收藏
- 关注
翻译 Learning OpenCV --- Histograms and Matching 直方图与匹配
第七章:Histograms and Matching 直方图与匹配在分析图像、物体和视频信息的过程中,我们常常想表示称之“直方图”的东西。直方图可以用来描述各种不同的事情,如物体的色彩分布、物体边缘梯度模板[Freeman95],以及表示目标位置的当前假设的概率分布。图7-1显示如果利用直方图进行快速姿态识别。边缘梯度从“上”,“右”,“左”,“停”和“正常”等手性姿态中得到。然后设
2008-12-11 12:47:00 13787 4
翻译 Learning OpenCV —— Gradients and Sobel Derivatives 梯度和Sobel导数
Gradients and Sobel Derivatives 梯度和Sobel导数 一个最重要并且最基本的卷积是导数的计算(或者是其近似值),有许多方法可以做到,但是只有少数适合于给定情况。通常来说,用来表达微分的最常用的操作是sobel微分算子(见图6-3,6-4)。Sobel算子包含任意阶的微分以及混合偏导(例如 )。图6-3 逼近x-方向上一阶微分的sobel算子效果
2008-12-11 12:39:00 11961 2
翻译 Learning OpenCV (第6.2节)—— 卷积
Convolution 卷积卷积是本章所讨论的很多转换的基础。抽象的说,这个术语意味着我们对图像的每一个部分所做的操作。从这个意义上讲,我们在第五章所看到的许多操作可以被理解成普通卷积的特殊情况。一个特殊的卷积所实现的功能是由所用的卷积核的形式决定的。这个核本质上是一个大小固定,由数值参数构成的数组,数组的标定点通常位于数组的中心。数组的大小被称为核支撑。单就技术而言,核支撑实际上仅仅由核数组
2008-12-11 12:34:00 12033 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人