-
题目描述:
-
输入两颗二叉树A,B,判断B是不是A的子结构。
-
输入:
-
输入可能包含多个测试样例,输入以EOF结束。
对于每个测试案例,输入的第一行一个整数n,m(1<=n<=1000,1<=m<=1000):n代表将要输入的二叉树A的节点个数(节点从1开始计数),m代表将要输入的二叉树B的节点个数(节点从1开始计数)。接下来一行有n个数,每个数代表A树中第i个元素的数值,接下来有n行,第一个数Ki代表第i个节点的子孩子个数,接下来有Ki个树,代表节点i子孩子节点标号。接下来m+1行,与树A描述相同。
-
输出:
-
对应每个测试案例,
若B是A的子树输出”YES”(不包含引号)。否则,输出“NO”(不包含引号)。
样例输入:
7 3 8 8 7 9 2 4 7 2 2 3 2 4 5 0 0 2 6 7 0 0 8 9 2 2 2 3 0 0 1 1 2 0 3 0样例输出:
YES NO【解题思路】一看到树,第一想法就是递归,虽然递归的效率确实不高,但在OJ上讲究时间效率,有时候配合适当的剪枝能快速AC。本题需要两层递归,首先我们要确定A树的哪个子树与B树进行比照,也就是确定A树的子节点,这是第一层递归;另外,在比较的时候我们也需要用到树的递归,对每一个节点进行比较。两层递归的顺序都是树的先序遍历的顺序。
中间有一点点小技巧,在第一层递归时,我们要在确定B树为子树的时候果断停止递归,避免过多的迭代。
AC code:
#include <cstdio>
#include <vector>
using namespace std;
struct st
{
int val;
st *lc;
st *rc;
};
bool flg=false,reflg=false;
void check(st *s1,st*s2)
{
if(s1->val!=s2->val)
{
flg=true;
return ;
}
if(s2->lc==NULL && s2->rc==NULL)
return ;
if(s1->lc!=NULL && s2->lc!=NULL)
check(s1->lc,s2->lc);
else if(s1->rc!=NULL && s2->rc!=NULL)
check(s1->rc,s2->rc);
else
{
flg=true;
return ;
}
}
void fill(vector<st> &veca,const int&n)
{
st ss;
ss.val=0;
ss.lc=ss.rc=NULL;
veca.push_back(ss);
for(int i=0;i<n;++i)
{
scanf("%d",&ss.val);
veca.push_back(ss);
}
for(int i=1;i<=n;++i)
{
int k,tt;
scanf("%d",&k);
for(int j=0;j<k;++j)
{
scanf("%d",&tt);
if(j==0)
veca[i].lc=&veca[tt];
else
veca[i].rc=&veca[tt];
}
}
}
void chk(st *st1,st *st2)
{
if(st1==NULL)
return;
flg=false;
check(st1,st2);
if (!flg) return;
if(st1->lc && flg)
chk(st1->lc,st2);
if(st1->rc && flg)
chk(st1->rc,st2);
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
vector<st> veca,vecb;
fill(veca,n);
fill(vecb,m);
st* st1=&veca[1],*st2=&vecb[1];
flg=false;
if(!st2)flg=false;
else chk(st1,st2);
if(flg)
printf("NO\n");
else
printf("YES\n");
}
return 0;
}
/**************************************************************
Problem: 1520
User: huo_yao
Language: C++
Result: Accepted
Time:10 ms
Memory:1024 kb
****************************************************************/
题目链接:http://ac.jobdu.com/problem.php?pid=1520
九度-剑指Offer习题全套答案下载:http://download.csdn.net/detail/huoyaotl123/8276299